The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

## SMART FLIP CALCULATOR MODULE

Related Publications

Discover the best professional documents and content resources in AnyFlip Document Base.

# SMART FLIP CALCULATOR MODULE

### SMART FLIP CALCULATOR MODULE

Calculator CASIO fx- 570 ES PLUS

Lim Hwee Cheng

Factorization
Polynomial

Solving Simultaneous Equations
Matrices

Statistics

MODE

RESET

SHIFT 9 (CLR ) 3 (ALL) = AC

To clear all the data
currently in calculator

memory

• White : press on
• Orange : press SHIFT
• Red : press ALPHA
• Green : Number Base

EQUATION CALCULATIONS

To start a EQN calculation, perform key operation
MODE 5 (EQN) to enter EQN MODE as below:

1= Simultaneous linear equation with 2 unknowns
2= Simultaneous linear equation with 3 unknowns
4= Qubic equation

Solve for 2x2  x  3  0

Step Action
1 MODE 5 to enter EQN mode

2 3 to choose QUADRATIC form
Input the coefficients ( a=2, b=1, c=-3)

3

2= 1= -3=

4 = to get the 1st solution

= to get the 2nd solution

(x 1)(2x  3)  0
x  1 and x   3

2

Factorize P(x)  2x3  5x2  9x 18 completely and determine
its zeros.

Step Action
1 MODE 5 to enter EQN mode

2 4 to choose QUBIC form
Input the coefficients ( a=2, b= 5, c= 9, d= 18)

3

2= - 5= - 9 = 18=

Step Action
4 = to get the 1st solution

= to get the 2nd solution

= to get the 3rd solution

We can easily convert into factorization form

5 Base on the solutions from calculator x  2, x  3, x  3

2

We can easily convert into factorization form

P(x)  (x  2)(x  3)(2x  3)
When P(x)  0, the zeros are  2, 3and 3

2

Solve for x + 2y = 3 and 2x + 3y = 4
Step Action
1 MODE 5 to enter EQN mode

2 1 anX + bnY = cn
Input the coefficients

3 1= 2= 3=

2= 3= 4=

4 To get the solutions
= x = 1
= y= 2

Solve the followings system of linear equation
x–y+z=2
x+y–z=0
–x + y + z = 4

Step Action

1 MODE 5 to enter EQN mode

2 1 anX + bnY + cnZ= dn

Input the coefficients
3

1= - 1 = 1 = 1=

1= 1= - 1 = 0=

- 1= 1= 1 = 4=

Step Action
4 To get the solutions
= x= 1
= y= 2

= z= 3

STEP 1 : Set MATRIX MODE MODE 6

STEP 2 : Assign data to special matrix variables
MatA, MatB, MatC

STEP 3 : Choose the order of the matrices

STEP 4 : Apply the Calculations Operation

Action Steps
Press MODE 6 (MATRIX)
Set
MATRIX MODE

Assign data to
SPECIAL MATRIX
VARIABLES

Choose the ORDER
of the Matrix

Enter the entries of Press AC to CLEAR SCREEN.

Matrix A, Matrix B

and Matrix C. Press SHIFT 4 (MATRIX) to enter the entries

of other matrices.

Let A  2 1 and B  2 1
1 1 1 1 

Find a) A + B b) B  A c) AB

Action Steps
MODE 6 (MATRIX)
MATRIX MODE

A  Mat A 1 (MAT A) 5 (2 X 2)

Input the ENTRIES 2= 1= 1= 1=
of MatA:

Action Steps
AC (Clear Screen) SHIFT 4 (MATRIX)
Input 2 (Data)
elements
of other
matrices

B  Mat B 2 (Mat B) 5 (2 X 2) =

Input the 2= -1= - 1= 1=
ENTRIES
of MatB: Press AC (Clear Screen) to peform the first
calculation screen.

Action Steps
Clear Screen AC (Clear Screen)
SHIFT 4 (MATRIX)

Calculation SHIFT 4 (MATRIX)

(MatA + MatB) 3 (MAT A) + SHIFT 4 (MATRIX) 4 (MAT B)

Solution Press =

A  B  4 0
0 2

Action Steps
Clear Screen AC (Clear Screen)
SHIFT 4 (MATRIX)

Calculation 4 (MAT B) - SHIFT 4 (MATRIX) 3 (MAT A)
(Mat B  Mat A)

Solution Press =

B  A  0  2
 2 
0 

Action Steps
Clear Screen AC (Clear Screen)
SHIFT 4 (MATRIX)

Calculation 3 (MAT A) X SHIFT 4 (MATRIX) 4 (MAT B)
(Mat A × Mat B)

Solution Press =

AB  3 1
1 
0 

STATISTICAL CALCULATIONS

To start a statistical calculation, perform key operation
MODE 3 (STAT) to enter STAT MODE and choose
1 ( 1 – VAR )

Notes SHIFT MODE

To ON / OFF Frequency Column ,
and press 4 (STAT)

Action MODE Steps
INPUTTING DATA 3 (STAT) 1 ( 1 – VAR )

Alternative Input the data into column X ( class mark ) and column FREQ
Method 1 ( class frequency)

Alternative SHIFT 1 (STAT / DIST)
Method 2

In STAT MODE and ON
Frequency column

2 ( 2: DATA )

Input the data into column X ( class mark ) and column FREQ
( class frequency)

Action 1) SHIFT Steps
1 (STAT / DIST)
OBTAINING
STATISTICAL
VALUES FROM
INPUT DATA

Summation 2) 3 (Sum)

To obtain statisticAaCl 1
values, press
while in the STAT Screen displays
MODE the total of x2

2

Screen displays
the total of x

Action Steps
1 (STAT / DIST)
OBTAINING
STATISTICAL VALUES 1) SHIFT
FROM INPUT DATA

Variance 2) 4 (Var)
Standard deviation
Mean
Number of data

To obtain statistical 1 (n) : Screen displays the NUMBER of data x
values, press AC __
while in the STAT
MODE 2 (x) : Screen displays the MEAN of data x

3 (x) : Screen displays the POPULATION

Standard Deviation

4 (sx) : Screen displays the SAMPEL

Standard Deviation

When frequencies are involved,

n  f

 x   fx

 x2   fx2

UNGROUP DATA
The following are the measured 100-meter race times for
five students.
12.5 11.6 10.8 12.8 11.4 (Unit: Seconds)

Calculate the MEAN and the SAMPLE STANDARD DEVIATION
for these results.

The following shows operation using the CASIO 570 ES PLUS

STEP OPERATION

1 Enter the STAT MODE and clear the statistical memory

MODE 3 (STAT) 1 ( 1 – VAR )

SHIFT 9 (CLR ) 2 (MEMORY) = AC

2 Input the data

SHIFT 1 (STAT / DIST) 2 ( DATA )

Remember to ON Frequency Column!

Input a value and press =

The DEFAULT VALUE of FREQ is 1.

STEP OPERATION

1 Calculate the MEAN of the data.

AC SHIFT 1 (STAT / DIST) 3 ( SUM )

Press 2 (  x ) =

Mean   x  59.1  11.82

n5

You may check the answer for MEAN by following operation.

AC SHIFT 1 (STAT / DIST) 4 ( VAR )

Press _

2 ( x) =

MEAN

STEP OPERATION

2 Calculate STANDARD DEVIATION of the data.

AC SHIFT 1 (STAT / DIST) 3 ( SUM )

Press 1 ( x2 ) = Press 2 (  x ) =

sx  1  701.25  59.12 
4 5

 0.8197560613

You may check the answer for MEAN by following operation.

AC SHIFT 1 (STAT / DIST) 4 ( VAR )

Press 4 ( sx) = STANDARD
DEVIATION

GROUP DATA

Find the mean and standard deviation of the following
grouped data.

Load(kN) Number of cables 1. Find Class Mark

80 - 84 3 xi  80  84  82
85 - 89 5 2
90 - 94 11
95 - 99 14 2. Frequency, fi
100 - 104 9
105 - 109 5
110 - 114 3

GROUP DATA

xf ON STAT MODE and FREQUENCY COLUMN
82 3

87 5 Press SHIFT 1 2 to input class mark x
92 11 and frequency f for each class interval
97 14

102 9 Input frequency

107 5 fi at the 2nd

112 3 Column

Input class mark xi
at the 1st Column

82 =

87 =

: =
:
112

Press AC SHIFT 1 GROUP DATA

3 2 = to get values of  fx

Mean , x   fx  4840  96.8kN
 f 50

Press AC SHIFT 1 3 1 = to get values of  fx2

Standard Deviation

 1 1  fx 2   fx2   1  471360  48402  = 7.62 ( 3s.f)
f 50 1 50
 f