DPP B2(b)
Institut Kemahiran MARA
Kuching, Sarawak
INFORMATION SHEET
PROGRAMME Certificate in Building Technology (STN)
SESSION November 2020 – April 2021 SEMESTER 1
IS 06
CODE & COURSE TCB10042 SHEET NO
Site Survey
LECTURER Nur Mardhiah Maureen binti WEEK
Chelen
TOPIC UNIT 4.0 TRAVERSE SURVEY (TOTAL STATION)
SUB-TOPIC 4.1 Introduction to traverse
4.2 Definition
4.3 Instrument used
- Compass
- Theodolite
- Total station
4.4 Methods and principle of traversing
4.5 Method of booking for closed traverse
4.6 Fieldwork
4.7 Plotting procedures
LEARNING After completing the topic, students should be able to:
OUTCOME
1. Identify definition of traverse.
2. Recognize the equipment for traverse.
3. Perform the method and principle of traverse.
4. Fill in the field Book and resolve the data collected.
5. Make a correction of closed traverse .
6. Plotting the data.
Page 1 of 21
DPP B2(b)
Pada masa sekarang, kebanyakan kerja-kerja pengukuran bagi ukur
kejuruteraan dan pembinaan adalah menggunakan alat total station kerana
ia menjimatkan masa selain memberikan kejituan yang tinggi dalam
pengukuran jarak. Selain itu digunakan secara meluas dalam menghasilkan
pelan tapak, pelan reka bentuk dan kerja pemancangan. Sebagai contoh
untuk menghasilkan pelan 3D kaedah tekimetrik elektronik menggunakan
alat total station serta kemudahan memory card dapat membantu memuat
turun data secara terus ke computer. Dengan itu pembentukan model
paramuka menjadi lebih cepat, tepat dan dipercayai.
1. PENGENALAN ALAT TOTAL STATION
Dengan penggunaan alat total station, kerja pengukuran menjadi lebih mudah
di mana keupayaan alat ini mengukur sudut dan jarak yang jauh,
membolehkan titik rekabentuk dapat ditanda terutama bagi kawasan yang
tidak sesuai untuk kerja pemetaan. Selain itu, lebih efektif untuk pengukuran
di kawasan yang banyak butiran dan padat, terdapat halangan lalulintas,
butiran dan paramuka semulajadi.
Total station adalah peralatan utama dalam kerja pengukuran di mana ia
akan mengukur jarak dan bering, sudut pugak dan jarak tegak secara
elektronik. Data pengukuran yang diterima seterusnya akan diproses dan
disimpan di dalamnya, sebelum dipaparkan secara digital di skrin paparan.
Kemudian data-data ini boleh dipindah turun (download) ke komputer untuk
diproses menggunakan perisian ukur yang dibekalkan.
Rajah 1
Rajah 2
Page 2 of 21
DPP B2(b)
2. KOMPONEN UTAMA ALAT TOTAL STATION
Komponen utama alat total station yang akan diterangkan adalah merujuk
kepada model alat total station (TOPCON GTS -220). Rujuk Rajah 2.
2.1 Teropong (Telescope)
Berfungsi untuk membuat cerapan atau melihat sasaran. Ia turut
mengandungi :
a) Skru Fokus (Telescope Focusing Knob)
Berfungsi untuk memokus pandangan /sasaran supaya
terang dan jelas
b) Kanta Mata Teropong (Telescope Eyepiece)
Berfungsi untuk memokus garis stadia kanta mata supaya
terang dan jelas
c) Skru Penumpu (Sighting Collimator)
Berfungsi sebagai panduan mencari sasaran secara kasar
d) Garisan Stadia (Crosshair)
Mengandungi garis stadia dan berfingsi untuk mencerap
objek sasaran dengan tepat.
Page 3 of 21
DPP B2(b)
2.2 Penyilang (Circle)
Berfungsi untuk memberikan nilai bacaan bagi sudut ufuk dan sudut
pugak di dalam bentuk digital (Penyilang Kiri dan Kanan)
1) Penyilang Ufuk (Horizontal Circle)
Berfungsi memberi nilai bacaan sudut ufuk secara digital.
2) Penyilang Tegak (Vertical Circle)
Berfungsi memberi nilai bacaan sudut pugak secara digital.
3) Skru Pengapit Plat Tegak (Vertical Motion Clamp)
Berfungsi untuk mengetatkan dan melonggarkan
pergerakan penyilang atas secara pugak
4) Skru Pengapit Plat Ufuk (Horizontal Motion Clamp)
Berfungsi untuk menggerakkan teropong secara ufuk
dengan perlahan
5) Skru Gerak Perlahan Tegak (Vertical Tangent Screw)
Berfungsi untuk menggerakkan teropong secara tegak
dengan perlahan.
6) Skru Gerak Perlahan Ufuk (Horizontal Tangent Screw)
Berfungsi untuk menggerakkan teropong secara ufuk
dengan perlahan.
7) Titik Tengah Alat (Instrument Center Mark)
Ketinggian Alat dari atas stesen rujukan
8) Skrin Paparan (Display Unit)
Ketinggian Alat dari atas stesen rujukan
Page 4 of 21
DPP B2(b)
2.3 GELEMBUNG ARAS (Bubble)
Berfungsi untuk mengaraskan alat
1) Gelembung Bulat ( Circular Bubble)
Mengaraskan tapak alat secara lebih kurang semasa
proses mendirisiapkan alat
2) Gelembung Plat ( Plate Bubble)
Mengaraskan alat dengan tepat menggunakan skru tapak
2.4 TRIBAK (Tribrach)
Berfungsi sebagai tapak bagi meletakkan alat total station di atas
kakitiga
1) Skru Tapak ( Footscrews/Levelling Screws)
Skru pelaras untuk mengaraskan gelembung bulat dan
gelembung plat.
2) Ladung Optik (Optical Plummet)
Memusatkan alat secara optikal di mana titik tengah pusat
optik mestilah berada tepat di atas titik stesen.
3) Pengunci (Tribrach Fixing Lever/ Clamp)
Mengunci atau membuka badan alat total station
3.0 PELARASAN ALAT TOTAL STATION
Terdapat dua jenis pelarasan yang di yang diperlukan sebelum alat total
station boleh digunakan iaitu :
1. Pelarasan Sementara
2. Pelarasan Tetap
Page 5 of 21
DPP B2(b)
Page 6 of 21
DPP B2(b)
Pelarasan Sementara
Pelarasan sementara dilakukan setiap alat total station didirisiapkan di atas
titik stesen terabas (piket, paku dsbnya). Ia dilakukan untuk memastikan
paksi tegak alat berada tepat di atas titik stesen terabas. Pelarasan
sementara meliputi tiga proses iaitu
1. Mendirisiapkan Alat Total Station
2. Pengarasan (levelling) dan Pemusatan (Centering)
3. Pemfokusan (focussing)
1. Mendirisiapkan Alat Total Station
Proses mendirisiapkan alat dilakukan di atas stesen terabas yang diduduki
1.1 Pasangkan kakitiga dengan ketinggian yang sesuai dengan
permukaan tapaknya lebih kurang aras
1.2 Alat total station diletakkan di atas kakitiga dan dikuncikan
pengunci tapak. Pastikan semua skru pengapit plat ufuk dan
pugak dilonggarkan supaya alat boleh diputarkan dengan bebas
1.3 Tekan salah satu kakitiga ke dalam tanah. Angkat dua kakitiga
yang lain dan gerakan ke kiri atau ke kanan sambil mata
pencerap melihat pada ladung optik, sehingga titik tengah
ladung optik berada tepat di atas titik terabas.
1.4 Tekan kakitiga ke tanah sehingga kedudukan kakitiga tersebut
kukuh dan tapak lebih kurang rata.
2. Pengarasan dan Pemusatan
Setelah keadaan alat total station lebih kurang aras dan hampir berada
di atas titik stesen, seterusnya pastikan alat berada dalam keadaan
aras dan berada atas titik stesen.
2.1 Pusingkan teropong supaya gelombong bulat (circular level)
berada dalam keadaan selari dengan mana-mana dua skru
tapak footscrews iaitu Skru A dan B . Gerakkan skru A dan B
dalam arah masuk secara serentak (atau arah yang berlawanan
secara serentak) sehingga gelembung berada dalam keadaan
tengah tiub. (Rujuk Rajah 4)
2.2 Pusingkan alat total station skru tapak C sehingga gelembung
bulat berada di tengah – tengah bulatan dua skru tapak
footscrews iaitu Skru A dan B . Gerakkan skru A dan B dalam
arah masuk secara serentak (atau arah yang berlawanan
secara serentak) sehingga gelembung berada dalam keadaan
tengah tiub.
Page 7 of 21
DPP B2(b)
2.3 Gerakkan alat total station secara ufuk sehingga kedudukan
gelembung plat (plate bubble) berada selari dengan mana-mana dua
skru tapak . Gerakkan skru A dan B sehingga gelembung berada di
tengah – tengah plat.
2.4 Pusingkan teropong pada kedudukan 90° dari kedudukan
tadi.Gerakkan skru tapak C sehingga gelembung bergerak dan berada
di tengan tiub sekali lagi. (Rujuk Rajah 5)
2.5 Ulang langkah 3 dan 4 di atas pada setiap kedudukan teropong 90°.
Pastikan gelembung bergerak dan berada di tengan tiub.
2.6 Laraskan skru kanta mata pada ladung optik sehingga titik rujukan dan
garisan stadia jelas kelihatan.
2.7 Dengan melihat pada ladung optik, longgarkan sedikit pengunci tapak
dan gerakkan tapak alat total station secara perlahan sehingga titik
ladung optik berada tepat di atas titik stesen. Selepas itu pengunci
diketatkan semula.
2.8 Seterusnya proses kerja 3 hingga 7 diulangi semula hingga alat
berada tepat di kedudukan stesen dan dalam keadaan aras yang
stabil. Putarkan alat dan semak kedudukan gelembung plat sehingga
gelembung bergerak dan berada di tengan tiub gelembung.
Rajah 4 Rajah 5
Page 8 of 21
DPP B2(b)
PEMFOKUSAN
Selepas alat total station didirisiapkan terdapat bezalihat di dalam
teropong dan ia mestilah dihilangkan supaya garisan stadia dan objek
sasaran dapat dilihat terang dan jelas .
i. Gerakkan skru kanta mata (telescope eyepiece) sehingga garis stadia
dapat dilihat dengan jelas
ii. Halakan teropng kepada objek sasaran yang hendak dilihat .
iii. Putarkan skru fokus (telescope focussing knob) sehingga objek
sasaran kelihatan. Imej objek dan garis stadia seharusnya berada di
satah yang sama dan tiada bezalihat setiap kali mata digerakkan
iv. Setelah pelarasan sementara dibuat alat total station berada dalam
keadaan baik dan sedia untuk digunakan. Paksi pugak ini akan
berada tepat di atas titik stesen.
PELARASAN TETAP
Pelarasan tetap adalah pelarasan yang perlu dilakukan sekiranya alat total
station mengalami kerosakan dan perlu dibaiki. Bagi alat yang berada
dalam keadan baik pelarasan tetap dilakukan secara berkala sekurang-
kurangnya setahun sekali.
Alat total station dikatakan berada dalam keadaan baik jika semua paksi-
paksi alat berada dalam keadaan betul.
1. Paksi tegak alat betul-betul tegak dan bersudut tepat dengan paksi
gelembung alat ketika gelembung plat berada di tengah tiubnya
2. Paksi sangga mestilah bersudut tepat dengan paksi ufuk (garis kolimat)
dalam satah ufuk dan bersudut tepat dengan paksi pugak dalam satah
pugak.
3. Bacaan sudut pugak mestilah 90° / 270° ketika paksi teropong berada
dalam keadaan mendatar.
Page 9 of 21
DPP B2(b)
.
Page 10 of 21
DPP B2(b)
Introduction to Total Station Survey.
A Total Station is the combination in one instrument of the functions of:
Electronic Theodolite
Electronic Distance Measuring Equipment
Data recording hardware and software
Some total stations include a microprocessor for data manipulation, minor
calculation and format conversion.
The theodolite and EDM share the one telescope so only one pointing is necessary.
Data recorded includes horizontal circle, vertical circle, height of prism, slope
distance, and codes for point description. Thus all the information required for a
survey can be recorded electronically in the instrument and downloaded to a PC
for reduction and plan production.
The EDM is usually of infrared type, measuring the distance to a prism, but the
latest instruments can be switched over to a low power LASER which allows
measurements without a prism.
This is especially useful for measurements to inaccessible or dangerous points.
Low power (for safety) restricts the range to approximately 80 metres.
If the beam is interrupted, the measurement displayed will be wrong.
Some instruments have a tracking facility and can be operated from the prism end
by one person.
Identify the instruments used.
When these instruments are combined with interfaced EDMIs and electronic data
collectors, they become electronic tacheometer instruments (ETIs), also known as
Total Stations. Figure 6.11 to 6.15 illustrate some additional Total Stations now in
use.
Page 11 of 21
DPP B2(b)
These Total Stations can read and record horizontal and vertical angles together
with slope distances. The microprocessors in the Total Stations can perform a
variety of mathematical operations: for example, averaging multiple angle
measurements: averaging multiple distance measurements; determining X, Y, Z
coordinates, remote object elevations (i.e., heights of sighted features), and
distances between remote points; and making atmospheric and instrumental
corrections. The data collector can be a handheld device connected by cable to
the tacheometer (see Figure 6.11 and 6.15), but many instruments come with the
data collector built into the instrument.
Figure 6.11 shows a Sokkia Total Station Set 3, a series of instruments that have
angle accuracies from 0.5 to 5 seconds, distance ranges (one prism) from 1600 m
to 2400 m. dual axis compensation, a wide variety of built-in programs, and a
rapid battery charger, which can charge the battery in 70 minutes. Data are stored
on-board in internal memory (about 1300 points) and/or on memory cards (about
2000 points per card). The data can be directly transferred to the computer from
the Total Station via an RS-232 cable, or the data can be transferred from the
data storage cards first to a card reader-writer and from there to the computer.
FIGURE 6.11 Sokkia Total Station
Set 3 with cable-connected SDR2
electronic field book- Also shown is a
two-way radio (2-mile range) with
push-to-talk headset. (Source : Courtesy of
Pentax Corp.,Colo.)
Page 12 of 21
DPP B2(b)
Many data collectors are really handheld computers, very sophisticated and very
expensive in excess of $2500. If the Total Station is being used alone, the
capability of performing all survey computations including closures and
adjustments is highly desirable. However, if the Total Station is being used as a
part of a system (field data collection/data processing/digital plotting), then the
computational capacity of the data collectors becomes less important. If the Total
Station is being used as part of a system, the data collector then can be
designed to collect only the basic information that is, slope distance, horizontal
angle, vertical angle, or coordinates and attribute data, such as point number,
point type, and operation code. Computations and adjustments are then
performed by one of the many coordinate geometry programs now available for
surveyors and engineers.
Most early models and some current models use the absolute method for
reading angles. These instruments are essentially optical coincidence
instruments with photo-electronic sensors to scan and read the circles, which are
divided into preassigned values from 0 to 360 degrees (or 0 to 400 grad or gon).
Some later models employ an incremental method of angle measurement.
These instruments have a circle divided into many graduations, with both sides
of the circle being scanned simultaneously; a portion of the circle is slightly
magnified and superimposed on the opposite side of the circle. As a result, a
pattern is developed that can be analyzed (with the aid of photodiodes) to read
the circles.
Both systems enable the surveyor to conveniently assign zero degrees (or any
other value) to an instrument sighting after the instrument has been sighted in.
Most Total Stations have coaxial electronic and optical systems, which permit
one sighting for both electronic and optical orientation. Other Total Stations have
the telescope mounted a bit below or above the CDMI. These instruments
employ a specific target/prism assembly similar to that shown in Figure 6.6 (left
side). The assembly is designed so that when the crosshairs are centred on the
target, the EDMI measuring beam is exactly on the prism.
The Total Station has an on-board microprocessor that monitors the instrument
status (e.g., level and plumb orientation, battery status, return signal strength)
and makes corrections to measured data for the first of these conditions, when
warranted. In addition, the microprocessor controls the acquisition of angles and
distances and then computes horizontal distances, vertical distances,
coordinates, and the like.
Page 13 of 21
DPP B2(b)
Many Total Stations arc designed so that the data stored in the data collector
can be automatically downloaded to a computer via an RS 232 interface. The
download program is usually supplied by the manufacturer and a second
program is required to translate the raw data into a format that is compatible with
the surveyor's coordinate geometry (i.e.processing) programs.
The system computer could be a mainframe, a mini, or a desktop, although
lower costs and increased capabilities have recently made the desktop computer
the choice of many surveyors and engineers.
Also, most Total Stations enable the surveyor to capture the slope distance and
the horizontal and vertical angles to a point by simply pressing one button. The
point number and point description for that point can then be recorded. In
addition, a wise surveyor will prepare a sketch showing the overall detail and the
individual point locations. This sketch will help keep track of the completeness of
the work and will be invaluable at a later date when the plot file is prepared.
Total Stations and/or their attached data collectors have been programmed to
perform a wide variety of surveying functions. Some programs require that the
proposed instrument station's coordinates and elevation as well as the
coordinates and elevations for proposed reference stations, be uploaded into the
Total Station prior to the field work.
Methods and principle.
After setup, the instrument station must be identified as such, and the hi and
prism heights must be measured and entered. Typical Total Station programs
include:
northing, easting, and elevation — determination
missing line measurement — This program enables the surveyor to
determine the horizontal and slope distances between any two sighted
points as well as the directions of the lines joining the sighted points.
resection — this technique permits the surveyor to set up the Total
Station at any convenient position and then determine the coordinates
and elevation of that position by sighting previously coordinated
reference stations. When sighting two points of known position, it is
necessary to measure both the distances and angles between the
Page 14 of 21
DPP B2(b)
reference points; when sighting several points (three or more) of known
position, it is only necessary to measure the angles between the points.
It is important to stress that most surveyors take more readings than
are minimally necessary to obtain a solution. These redundant
measurements give the surveyor increased precision and a check on
the accuracy of the results.
azimuth — the azimuth of the line joining a sighted point from the
instrument station is readily displayed.
remote object elevation — the surveyor can determine the heights of
inaccessible points (e.g., electricity conductors, bridge components,
etc.) by simply sighting the pole-mounted prism as it is being held
directly under the object. When the object itself is sighted, the object
height can be promptly displayed (the prism height must first be entered
into the Total Station; it is often set at the value of the instrument hi).
offset measurements (a) distance offsets — When an object is hidden
from the Total Station, a measurement can be taken to the prism held
out in view of the Total Station and then the offset distance is
measured. The angle (usually 90°) to the hidden object along with the
measured distance is entered into the Total Station, enabling it to
compute the position of the hidden object, (b) angle offsets—the prism
is held to the left or right of the object being located (e.g., a concrete
column).
The prism is centred and then an angle is measured to the
predetermined centre of the object. The program will compute the
coordinates of the centre of the object (the concrete column, in this
case).
layout or setting-out positions — After the coordinates and elevations of
the layout points have been uploaded into the Total Station, the
layout/setting-out software will enable the Total Station to display the
left/right, forward/back, and up/down movements needed to place the
prism in each of the desired positions. This capability is a great aid in
property and construction layouts.
building face pickup — This program permits the surveyor to define the
vertical face of a building, including all cut-outs (doors and windows) by
simply turning angles to each feature.
Page 15 of 21
DPP B2(b)
FIGURE 6.12 Wild TC500 Total Station featuring angles to 5
seconds and distances to one prism to 700 m (2,300 ft) a*. +/- (5
mm + 5 ppm) accuracy. Data are stored in attached data collector
(Wild GPCI field computer). Used in construction and engineering
surveys. (Source : Courtesy of Leica, Switzerland in the Ramsay)
FIGURE 6.13 Wild TCt 610 Total Station with on-board removable
data storage modules (module reader required to effect transfer to
computer).Angles are read to within 1.5 seconds and distances to
one prism to 2.5 km (8,200 ft) at +/- (2 mm + 2 ppm) accuracy.
(Source : Courtesy of Leica Co. Inc..Toronto in the Ramsay)
Page 16 of 21
DPP B2(b)
FIGURE 6.14 Topcon GTS 300 Total Station. The 300 Series
instruments have angle accuracies from I second to 10 seconds
and single prism distances from 1.200 m (3.900 ft) to 2.400 m
(7.900 ft) at +/-(2 mm + 2 ppm) accuracy. (Source : Courtesy of
Leica Co. Inc..Toronto in the Ramsay)
FIGURE 6.15 : Topcon FS2 Data Collector for use with GTS 300
Series Total Stations. (Courtesy of Topcon Instrument Corp.,
Paramus, N.J.) (Source : Courtesy of Leica Co. Inc..Toronto in
the Ramsay)
Page 17 of 21
DPP B2(b)
Total Station is an electronic/optical instrument used in modern surveying. The
total station is an electronic theodolite (transit) integrated with an electronic
distance meter (EDM) to read distances from the instrument to a particular
point.
Robotic total stations allow the operator to control the instrument from a
distance via remote control. This eliminates the need for an assistant staff
member as the operator holds the reflector and controls the total station from
the observed point
Coordinate Measurement
Coordinates of an unknown point relative to a known coordinate can be
determined using the total station as long as a direct line of sight can be
established between the two points. Angles and distances are measured from
the total station to points under survey, and the coordinates (X, Y, and Z or
northing, easting and elevation) of surveyed points relative to the total station
position are calculated using trigonometry and triangulation.
To determine an absolute location a Total Station requires line of sight
observations and must be set up over a known point or with line of sight to 2
or more points with known location.
For this reason, some total stations also have a Global Navigation Satelite
System interface which do not require a direct line of sight to determine
coordinates. However, GNSS measurements may require longer occupation
periods and offer relatively poor accuracy in the vertical axis.
Angle measurement
Most modern total station instruments measure angles by means of electro-
optical scanning of extremely precise digital bar-codes etched on rotating
glass cylinders or discs within the instrument. The best quality total stations
are capable of measuring angles to 0.5 arc-second. Inexpensive "construction
grade" total stations can generally measure angles to 5 or 10 arc-seconds.
Distance Measurement
Measurement of distance is accomplished with a modulated microwave or
infrared carrier signal, generated by a small solid-state emitter within the
instrument's optical path, and reflected by a prism reflector or the object under
survey.
Page 18 of 21
DPP B2(b)
The modulation pattern in the returning signal is read and interpreted by the
computer in the total station. The distance is determined by emitting and
receiving multiple frequencies, and determining the integer number of
wavelengths to the target for each frequency. Most total stations use purpose-
built glass Porro prism reflectors for the EDM signal. A typical total station can
measure distances with an accuracy of about 1.5 millimetres (0.0049 ft) + 2 parts
per million over a distance of up to 1,500 metres (4,900 ft).[1]
Reflectorless total stations can measure distances to any object that is
reasonably light in color, to a few hundred meters.
Data processing
Some models include internal electronic data storage to record distance,
horizontal angle, and vertical angle measured, while other models are equipped
to write these measurements to an external data collector, such as a hand-held
computer.
When data is downloaded from a total station onto a computer, application
software can be used to compute results and generate a map of the surveyed
area.
Applications
Total stations are mainly used by land surveyors. They are also used by
archaeologists to record excavations and by police, crime scene investigators,
private accident reconstructionists and insurance companies to take
measurements of scenes.
Mining
Total stations are the primary survey instrument used in mining surveying.
A total station is used to record the absolute location of the tunnel walls (stopes),
ceilings (backs), and floors as the drifts of an underground mine are driven. The
recorded data is then downloaded into a CAD program, and compared to the
designed layout of the tunnel.
The survey party installs control stations at regular intervals. These are small
steel plugs installed in pairs in holes drilled into walls or the back. For wall
stations, two plugs are installed in opposite walls, forming a line perpendicular to
the drift. For back stations, two plugs are installed in the back, forming a line
parallel to the drift.
Page 19 of 21
DPP B2(b)
A set of plugs can be used to locate the total station set up in a drift or tunnel
by processing measurements to the plugs by intersection and resection.
The Total Station has an on-board microprocessor that monitors the instrument
status (e.g., level and plumb orientation, battery status, return signal strength)
and makes corrections to measured data for the first of these conditions, when
warranted. In addition, the microprocessor controls the acquisition of angles and
distances and then computes horizontal distances, vertical distances,
coordinates, and the like.
Many Total Stations arc designed so that the data stored in the data collector
can be automatically downloaded to a computer via an RS 232 interface. The
download program is usually supplied by the manufacturer and a second
program is required to translate the raw data into a format that is compatible with
the surveyor's coordinate geometry (i.e.. processing) programs.
The system computer could be a mainframe, a mini, or a desktop, although
lower costs and increased capabilities have recently made the desktop computer
the choice of many surveyors and engineers.
Also, most Total Stations enable the surveyor to capture the slope distance and
the horizontal and vertical angles to a point by simply pressing one button. The
point number and point description for that point can then be recorded. In
addition, a wise surveyor will prepare a sketch showing the overall detail and the
individual point locations. This sketch will help keep track of the completeness of
the work and will be invaluable at a later date when the plot file is prepared.
Page 20 of 21
DPP B2(b)
EXERCISE :
Data dalam Jadual dibawah diperolehi daripada pelarasan bering dan jarak muktamad dari
buku kerja luar terabas kelas kedua. Jika koordinat stesen 1 ialah U1000.00 m dan
B1000.00 m. kirakan :
i. Tikaian Lurus
ii. Pembetulan latit/dipat dengan menggunakan Rumus Bowditch
iii. Koordinat semua stesen
iv. Keluasan Terabas (menggunakan kaedah 2 Kali Latit Kali Dipat)
Jadual : Maklumat bering dan jarak garisan terabas
Garisan Bering Muktamad Jarak Muktamad (m)
1–2 191 01 30 63.748
2–3 282 08 30 52.417
3–4 319 24 00 34.523
4–5 50 03 00 66.539
5–1 116 30 00 38.984
REFERENCE :
o Buku Kejuruteraan Survey
- UTHM, UTM
o Modul
- ECV 2072 -Introduction To Survey -
o Laman web
- http:// www.wikipedia.
Page 21 of 21