39. cos8A + sin8A = 1 - sin22A + 1 sin42A
8
LHS, cos8A + sin8A
= (cos4A)2 + (sin4A)2
= (cos4A - sin4A)2 + 2 cos4A.sin4A
= {(cos2A)2 - ( sin2A)2}2 + 2 1 .16 cos4A.sin4A
.16
= {(cos2A + sin2A)(cos2A - sin2A)}2 + 1 (2sinAcosA)4
8
= (1 . cos2A)2 + 1 (sin2A)4
8
= cos22A + 1 sin42A
8
= 1 - sin22A + 1 sin42A RHS proved
8
51
[email protected]
40. sin3A.sin3A + cos3A.cos3A = cos32A
LHS, sin3A.sin3A + cos3A.cos3A
3sinA - sin3A 3cosA + cos3A
= 4 .sin3A + 4 . cos3A
sin3A( 3sinA -sin3A) cos3A( 3cosA + cos3A)
=4+
4
= 1 ( 3sin3AsinA - sin23A + 3cos3AcosA + cos23A)
4
= 1 ( 3cos3AcosA +3sin3AsinA+ cos23A- sin23A)
4
1
= 4 { 3(cos3A.cosA + sin3A.sinA) + cos6A}
1
= 4 {3cos(3A -A) + cos3.2A}
= 1 (3cos2A + 4cos32A - 3cos2A)
4
= 1 .4cos32A
4
= cos32A RHS proved
52
[email protected]
Exercise :K
1.Prove that sin3A.cos3A + cos3A.sin3A 3 sin4A
=4
2. Prove that cos3A.sin33A + sin3A.cos33A = sin4A
4
3. Prove that cos8A + sin8A = cos22A + 1 sin42A
8
4. Prove that 8cos8A + 8sin8A= 8 - 8sin22A+ sin42A
41.Prove that (1 + sin2A + cos2A)2 = 4 cos2A( 1 + sin2A)
LHS (1 + sin2A + cos2A)2
= ( 1 + cos2A+ sin2A)2
= ( 2cos2A + 2sinA.cosA)2
= {2cosA(cosA +sinA)}2
= 4cos2A ( cosA + sinA)2
= 4cos2A( cos2A + 2cosA.sinA + sin2A)
= 4cos2A(sin2A + cos2A+ 2cosA.sinA)
= 4cos2A( 1 + sin2A) RHS Proved
53
[email protected]
1
42. Prove that sin6°.cos12°.cos24°.cos48° = 16
LHS, sin6°.cos12°.cos24°.cos48°
2sin6°.cos6°.cos12°.cos24°.cos48°
= 2cos6°
sin12°.cos12°.cos24°.cos48°
= 2cos6°
2sin12°.cos12°.cos24°.cos48°
= 2 ×2cos6°
sin24°.cos24°.cos48°
= 4cos6°
2sin24°.cos24°.cos48°
= 2×4cos6°
sin48°.cos48°
= 8cos6°
2 sin48°.cos48°
= 2×8cos6°
sin96°
= 16cos6°
sin(90+6)°
= 16cos6°
cos6° 1
= 16cos6° = 16 RHS Proved
54
[email protected]
1
43. Prove that sinAsin(60° + A) sin(60°- A) = 4 sin3A
LHS, sinAsin(60° + A) sin(60°- A)
= sinA.(sin60°.cosA + cos60°.sinA) ( sin60°cosA- cos60°.sinA)
= sinA 3 .cosA + 1 3 .cosA - 1
2 2 2 2
sinA sinA
= sinA43 .cos2A - 1 sin2A
4
= sinA 3 .(1- sin2A) - 1 sin2A
4 4
= sin.A. 1 (3 -3sin2A - sin2A)
4
= sin.A. 1 ( 3 - 4sin2A)
4
= 1 (3sinA - 4sin3A)
4
1
= 4 sin3A RHS Proved
55
[email protected]
44. If tan2A = 1 + 2 tan2B , show that cos2B = 1 + 2cos2A .
Given, tan2A = 1 + 2 tan2B
or, 1- cos2A =1+2 1- cos2B
1+ cos2A 1+ cos2B
1- cos2A 1 + cos2B + 2(1 - cos2B)
or, 1+ cos2A =
(1 + cos2B)
or, ( 1- cos2A) (1 + cos2B) = ( 1 +cos2A) ( 1 + cos2B + 2 - 2
cos2B)
or, 1 + cos2B - cos2A - cos2A.cos2B = (1 + cos2A) ( 3 - cos2B)
or, 1 + cos2B - cos2A - cos2A.cos2B = 3 - cos2B + 3cos2A -
cos2A.cos2B
or, cos2B + cos2B = 3 - 1 + 3cos2A + cos2A - cos2A.cos2B+
cos2A.cos2B
or, 2cos2B = 2 + 4 cos2A
or, cos2B = 2( 1+2cos2A)
2
or, cos2B = 1 + 2cos2A Proved
56
[email protected]
Exercise:L
1.Prove that (1 + sin2A + cos2A)2 = (1 + sin2A)
4 cos2A
(1 + sin2A + cos2A)2 4
2. Prove that (1 + sin2A) = sec2A
1
3. Prove that cos36°.cos72°.cos108°.cos144° = 16
1
4.Prove that cos24°.cos48°.cos96°.cos168° = 16
5. Prove that sinAcosAcos2A cos4A = sin8A
6. Prove that tanAtan (60° + A) tan (60°- A) = tan3A
7.If 4tan2A = tan2B then prove that cos2A = 3 + 5cos2B
5 + 3cos2B
3cos2B - 1
8.If tanA = 2 tanB then prove that cos2A = 3 - cos2B
57
[email protected]
sinA sin4A
1. prove that secA = 4cos2A
sin4A
RHS, 4cos2A
sin2.2A
= 4cos2A
2sin2A.cos2A
= 4cos2A
2sin2A
=4
2.2sinA.cosA
=4
= sinA.cosA LHS Proved
1
= sinA.secA
sinA
=secA
58
[email protected]
59
[email protected]