1 SESSION 2019/2020 SM015/1
PSPM 1
SM015/1
PSPM 1
2019/2020
14 OCTOBER 2019
KOLEJ MATRIKULASI KEDAH
Authored by: KANG KOOI WEI
1
2 SESSION 2019/2020 SM015/1
PSPM 1 [2 marks]
[7 marks]
Questions [5 marks]
[5 marks]
SECTION A [45 marks] [3 marks]
[4 marks]
This section consists of 5 questions. Answer all questions. [2 marks]
1. Given the complex numbers 1 = − and 2 = 2 + √3. [2 marks]
[5 marks]
a. Express 12 and ̅ 2 in the form + , where , ∈ ℛ.
[2 marks]
b. From part 1(a), find = 12+ ̅ ̅2̅. Hence, find | | and argument . [4 marks]
[4 marks]
1
2. Solve the following:
a. 3(52 ) + 2512 +1 = 200
b. + 4 ≤ 2 + < 12
3. The sum of the first terms of a sequence is given by = 2 + 3−4 .
a. Find the value of constant c such that the -th term is 3−4 .
b. Show that the3 sequence is a geometric series.
c. Find the sum of the infinite series, ∞.
2 30
4. Given matrix = [−5 0 4].
0 21
a. Find the determinant of matrix by expanding the first row.
b. Calculate the adjoin of matrix . Hence, find −1.
1
c. Solve the equation = , where = [2], by using the answer obtained
2
in part 4(b).
5. Given ( ) = 1+11+1 1 .
a. Simplify ( ) and evaluate (12).
b. The domain of ( ) is a set of real number except three numbers.
Determine the numbers.
2
3 SESSION 2019/2020 SM015/1
PSPM 1 [6 marks]
[7 marks]
SECTION B [25 marks] [2 marks]
[7 marks]
1. Solve the following: [3 marks]
a. 22 = 2 4( + 4)
b. 2 | −3 | ≥ 1
2 −1
2. Given a function ( ) = ln(2 + 1)
a. State the domain and range of ( ).
b. Find the inverse function of ( ) and state its domain and range. Hence, find
the value of for which −1( ) = 0.
c. Sketch the graph of ( ) and −1( ) on the same coordinate axes.
END OF QUESTION PAPER
3
4 SESSION 2019/2020 SM015/1
PSPM 1
Question A1
1. Given the complex numbers 1 = − and 2 = 2 + √3.
a. Express 12 and ̅ 2 in the form + , where , ∈ ℛ.
b. From part 1(a), find = 12+̅ ̅2̅. Hence, find | | and argument .
1
SOLUTION
a) = −
= + √
= (− )
= − +
̅ ̅ ̅ = − √
b) = +̅ ̅ ̅
= (− )+( − √ )
(− )
= − √
(− )
= ( − √ )( )
(− )( )
= − √
−
= +√
= √ +
| | = √√ +
4
5 SESSION 2019/2020 SM015/1
PSPM 1
= √ +
=
= − ( )
√
=
5
6 SESSION 2019/2020 SM015/1
PSPM 1
Question A2
2. Solve the following:
a. 3(52 ) + 2512 +1 = 200
b. + 4 ≤ 2 + < 12
SOLUTION
a) 3(52 ) + 2512 +1 = 200
( ) + ( ) + =
( ) + ( ) + =
( ) + ( ) ( ) =
( ) + ( ) =
=
+ − =
( + )( − ) =
= − =
= − (ignored)
=
=
b) + 4 ≤ 2 + < 12 And + <
+ − <
+ ≥ + ( + )( − ) <
+ − − ≥ = − =
− ≥
( + )( − ) ≥ 6
= − =
7 SESSION 2019/2020 SM015/1
PSPM 1
(−∞, − ) (− , ) ( , ∞) (−∞, − ) (− , ) ( , ∞)
+
+ - + + + - + +
+
− - - ○+ − - - +
○+ - + ○-
(−∞, − ] ∪ [ , ∞) And (− , )
− −
(− , − ] ∪ [ , )
7
8 SESSION 2019/2020 SM015/1
PSPM 1
Question A3
3. The sum of the first terms of a sequence is given by = 2 + 3−4 .
a. Find the value of constant c such that the -th term is 3−4 .
b. Show that the sequence is a geometric series.
c. Find the sum of the infinite series, ∞.
SOLUTION
a) = 2 + 3−4
= − −
− = ( + − ) − ( + − ( − ))
− = + − − − − +
− = − − −
− = − − ( − )
− = − ( − )
− = − ( − )
= −
b) = − ( − )
= − ( − )
− [ − ( − )]
−
= ( − )
[ − + ]
−
= − + −
−
= −
−
8
9 SESSION 2019/2020 SM015/1
PSPM 1
=
−
,
−
c) = − ( − )
= = − ( − ( )) = −
=
∞ =
−
(− )
=
−( )
(− )
=
( )
= −
9
10 SESSION 2019/2020 SM015/1
PSPM 1
Question A4
2 30
4. Given matrix = [−5 0 4].
0 21
a. Find the determinant of matrix by expanding the first row.
b. Calculate the adjoin of matrix . Hence, find −1.
1
c. Solve the equation = , where = [2], by using the answer obtained in
2
part 4(b).
SOLUTION
2 30
a) = [−5 0 4]
0 21
| | = ( ) | | − ( ) |− | + ( ) |− |
= ( )( − ) − ( )(− − ) + ( )|− − |
= − + +
= −
b) Adjoin of matrix
+ | | − |− | + |− |
, = − | | + | | − | |
(+ | | − |− | + |− |)
+( − ) −(− − ) +(− − )
= ( −( − ) +( − ) −( − ) )
+( − ) −( − ) +( + )
10
11 SESSION 2019/2020 SM015/1
PSPM 1
− −
= (− − )
−
=
− −
= ( − )
− −
− =
| |
− −
−
= ( − )
− −
−
= (− − )
−
c) =
= −
[− ] [ ] = [ ]
−
[ ] = (− − ) [ ]
−
+ −
= (− − + )
+ −
11
12 SESSION 2019/2020 SM015/1
PSPM 1
−
= ( )
−
∴ = − , = , = −
12
13 SESSION 2019/2020 SM015/1
PSPM 1
Question A5
5. Given ( ) = 1+11+1 1 .
a. Simplify ( ) and evaluate (21).
b. The domain of ( ) is a set of real number except three numbers. Determine
the numbers.
SOLUTION
a) ( ) = 1
1+1+1 1
=
+ +
=
+ +
=
+ +
+
= +
+
( ) = ( )+
( )+
= ( )
=
b) ( ) = 1
1+1+1 1
13
14 SESSION 2019/2020 SM015/1
PSPM 1
1 ≠ 0 ≠ 0
1 + 1 ≠ 0 ≠ −1
1 + 1 ≠ 0 2 + 1 ≠ 0 ≠ −1
1+ 1
2
∴ ≠ 0; ≠ −1; ≠ − 1
2
14
15 SESSION 2019/2020 SM015/1
PSPM 1
Question B1
1. Solve the following:
a. 22 = 2 4( + 4)
b. 2 |2 −−31| ≥ 1
SOLUTION
a) 22 = 2 4( + 4)
= ( + )
= ( + )
= ( + )
= ( + )
( )
= ( + )
= +
=
b) 2 | −3 | ≥ 1
2 −1
| − | ≥
−
− ≥ OR − ≤ −
−
−
− − ≥ − + ≤
− −
( − )−( − ) ≥ ( − )+( − ) ≤
( − ) ( − )
− − + ≥ − + − ≤
− −
15
16 SESSION 2019/2020 SM015/1
PSPM 1 − ≤
− ≥ −
− = ; =
− <
<
(−∞, ) ( , ) ( , ∞)
< +
- +
− +
-
+
-
−
+ ○-
OR ( , ]
(−∞, )
(−∞, ) ∪ ( , ]
16
17 SESSION 2019/2020 SM015/1
PSPM 1
Question B2
2. Given a function ( ) = ln(2 + 1)
a. State the domain and range of ( ).
b. Find the inverse function of ( ) and state its domain and range. Hence, find
the value of for which −1( ) = 0.
c. Sketch the graph of ( ) and −1( ) on the same coordinate axes.
SOLUTION
a) ( ) = ln(2 + 1)
:
: + >
> −
: (− , ∞)
:
= (−∞, ∞)
b) ( ) = ln(2 + 1)
[ − ( )] =
[ − ( ) + ] =
− ( ) + =
− ( ) = −
− ( ) = −
:
− = = (−∞, ∞)
:
− = = (− , ∞)
17
18 SESSION 2019/2020 SM015/1
PSPM 1
− ( ) =
− =
− =
=
=
=
c)
18