The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

1 Curvilinear coordinates 1.1 Basis and coordinates location described by set of coordinates coordinate line given by for all tangent vector at

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-02-21 03:57:03

PH5011 General Relativity - Astronomy Group

1 Curvilinear coordinates 1.1 Basis and coordinates location described by set of coordinates coordinate line given by for all tangent vector at

    PH5011
General Relativity

Notes from Martinmas 2011
[email protected]

0 General issues

0.1 Summation convention

dimension of coordinate space

pairwise indices imply sum

0.2 Indices

  Apart from a few exceptions,
  upper and lowerindices
are to be distinguished thoroughly

2

1 Curvilinear coordinates

1.1 Basis and coordinates

location described by set of coordinates

coordinate line given by for all

tangent vector at

≡ basis vector related to coordinate

⤿ set of basis vectors spans tangent space at
infinitesimal displacement in space on variation of coordinate
              given by line element

in general, the basis vectors depend on

3

1 Curvilinear coordinates

1.1 Basis and coordinates

Example A: Cartesian coordinates (I)

4

1 Curvilinear coordinates

1.1 Basis and coordinates

Example B: Constant, non‐orthogonal system (I)

5

1 Curvilinear coordinates

1.2 Reciprocal basis

construction: Kronecker‐delta
orthogonality
normalization for
for
 orthogonal basis for
orthonormal basis
6

1 Curvilinear coordinates

1.2 Reciprocal basis

Special case: 3 dimensions

7

1 Curvilinear coordinates

1.2 Reciprocal basis

Example A: Cartesian coordinates (II)
⤿

8

1 Curvilinear coordinates

1.2 Reciprocal basis

Example B: Constant, non‐orthogonal system (II)

⤿

9

1 Curvilinear coordinates

1.3 Metric

⤿ coefficients of metric tensor (→ 1.5)
as matrix symmetry:

10

1 Curvilinear coordinates

1.3 Metric

Examples A+B: Cartesian & non‐orthogonal constant basis (III)
⤿
⤿

11

1 Curvilinear coordinates

1.3 Metric

length of curve given by

parametric representation of curve

12

1 Curvilinear coordinates

1.3 Metric

Example: Length of equator in spherical coordinates
use parameter along the azimuth
⤿

⤿ in

one only needs to consider :

one full turn for and

13

With the reciprocal basis 1 Curvilinear coordinates

1.3 Metric

,

one defines reciprocal components of the metric tensor

which fulfill ,

equivalent to the condition for the inverse matrix

14

1 Curvilinear coordinates

1.3 Metric

metric tensor
orthonormality condition

⤿

“lowers index”
“raises index”

15

1 Curvilinear coordinates

1.4 Vector fields

mathematics: vector field
    physics: vector (field)
vector components defined by means of basis vectors

contravariant components (→ 1.6)
covariant components

“raising/lowering indices”

16

1.5 Tensor fields 1 Curvilinear coordinates

mathematics: tensor field
    physics: tensor (field)

tensor is multi‐dimensional generalization of vector

product of vector spaces

behaves like a vector with respect to each of the vector spaces

rank of tensor tensor of rank 0 scalar
tensor of rank 1 vector
tensor of rank 2 square matrix
tensor of rank 3 cube
              ........

17

basis vectors 1 Curvilinear coordinates
⤿
1.5 Tensor fields

apply to each of the vector spaces

contravariant components
covariant components

mixed components

18

1 Curvilinear coordinates

1.5 Tensor fields

Example: Rank‐2 tensor

⤿
Coincidentally, with the matrix product

For Cartesian coordinates:

19

1 Curvilinear coordinates

1.6 Coordinate transformations

consider different set of coordinates

(chain rule)

different coordinate systems describe same locations
⤿

⤿

20

1 Curvilinear coordinates

1.6 Coordinate transformations

vector fields
⤿

  covariant derivatives
differentials
} {contravariant
components transform like coordinate

tensor fields

⤿

21

1 Curvilinear coordinates

1.6 Coordinate transformations

Proof: are covariant components of a tensor
⤿

22

1 Curvilinear coordinates

1.7 Affine connection

in general, basis vectors depend on the coordinates

derivative of basis vector written in basis

affine connection (Christoffel symbol)

derivative of reciprocal basis vector:
⤿

23

1 Curvilinear coordinates

1.7 Affine connection

Example C: Spherical coordinates (IV)

⤿
⤿
24

1 Curvilinear coordinates

1.7 Affine connection

Example C: Spherical coordinates (IV) [continued]
⤿

⤿

⤿
25

1 Curvilinear coordinates

1.7 Affine connection

given that

the Christoffel symbolscan be expressed by means
  of the components of the metric tensorand their derivatives

26

Proof: 1 Curvilinear coordinates
⤿
1.7 Affine connection
(II) + (III) ‐ (I) :
⤿ (I)
(II)
(III)

27

2 Tensor analysis and the basis vectors

2.1 Covariant derivative

vector field
    both the vector components
     depend on the coordinates

derivative:

define covariant derivative of a contravariant vector component
as so that

28

2 Tensor analysis

2.1 Covariant derivative

derivatives transform as

⤿ can be considered the covariant components
of the vector

(gradient)
covariant components of a vector

form components of a tensor, not

29

2 Tensor analysis

2.1 Covariant derivative

contravariant components covariant components

covariant derivatives of tensor components

{ }for eachupper {index , add
lower

where takes place of in or

30

2 Tensor analysis

2.1 Covariant derivative

Covariant derivative of 2nd‐rank tensor

⤿
31

2 Tensor analysis

2.2 Riemann tensor

order of 2nd covariant derivatives of vector
  is not commutative, but

with the Riemann (curvature) tensor

(not intended to be memorized)

with and              m

Rilkj = gim R lkj

⤿

32

2 Tensor analysis

2.2 Riemann tensor

Riemann tensor has two pairs of indices and is

antisymmetri[[c in the indices of each pair

symmetric in exchanging the pairs

Moreover,

(1st Bianchi identity)
(2nd Bianchi identity)

33

2 Tensor analysis

2.2 Riemann tensor

Proof: is a scalar
The scalar product of two vectors
⤿

On the other hand

⤿
(Riemann curvature tensor is antisymmetric in first two indices)

34

2 Tensor analysis

2.3 Einstein tensor

2nd‐rank curvature tensor fulfilling

must relate to Riemann tensor
only a single non‐vanishing contraction (up to a sign)

(Ricci tensor)

with next‐level contraction
(Ricci scalar)

⤿ matches required conditions

35


Click to View FlipBook Version