Modul I Love Maths
TOPIC :1 NUMBER SYSTEM
SUBTOPIC: COMPLEX NUMBER
Complex number must be written in the form of z a bi
Conjugate of complex number z* a bi
Modulus of complex number: z a2 b2
Arguement of complex number:
tan1 b
tan1 b a z 1 2i
z 1 2i a
tan1 b
a z 1 2i
tan1 b
a
z 1 2i IMPORTANT!
Polar form : z rcos i sin . Make sure in
r z argz,
radian.
Equality of complex number
z1 z2
a bi x yi
STEEPQ1:UmAaLkIeTsYureOzF1 CanOdMz2PinLEthXe fNorUmMoBf EaR bi .
STEP 1: make sure z1SaTnEdPz22 :inCtohme pfoarrem:of a bi . z1 z2
STEP 2: Compare :
real part of the right hand side= real part of the left hand side
iimmaaggiinnaarryy ppaarrtt ooff tthhee rriigghhtt hhaanndd ssiiddee== iimmaaggiinnaarryy ppaarrtt ooff tthhee lleefftt hhaanndd ssiiddee
By: Madam Nuraini Abdullah 1
Kolej Matrikulasi Pahang
Modul I Love Maths
TOPIC :2 EQUATIONS AND INEQUALITIES
SUBTOPIC: LOGARITHM
PROBLEMS: HOW TO SOLVE LOGARITHM EQUATION?
METHOD:
LOG
SAME BASE DIFFERENT BASE
MAKE IT AS SINGLE LOG CHANGE BASE
CHANGE INTO INDEX FORM/ SOLVE THE EQUATION
COMPARE
2log x log 2 log 3x 4 log6 x3 2 logx 6 1
STEP 1: COLLECT LOG AT ONE SIDE STEP 1: CHANGE BASE DIFFERENT BASE
2log x log 2 log 3x 4 log6 x3 2 log6 6 1 USE RULE
log6 x
loga bm m loga b
STEP 2: MAKE IT AS SINGLE LOG STEP 2 : SOLVE THE EQUATION
Use Law Of
Logarithm: log a log b log ab 3 log 6 x 2 x 1
log6
a
log a log b log b Let u log6 x
log x2 log 23x 4 3u 2 1
u
STEP 3 : CHANGE INTO INDEX FORM/
COMPARE 3u2 2 u
x2 23x 4 3u2 u 2 0
STEP 4 : SOLVE THE EQUATION u 13u 2 0
x2 6x 8 0
TIPS:Don’t forget u 1, u 2
x 4x 2 0 to check the final 3
x 4, x 2 answer!! log6 x 1, log6 x 2
3
2
x 6, x 63
By: Madam Nuraini Abdullah 2
Kolej Matrikulasi Pahang
Modul I Love Maths
TOPIC :2 EQUATIONS AND INEQUALITIES
SUBTOPIC: INDICES
PROBLEMS: HOW TO SOLVE INDICES EQUATION?
METHOD:
SOLVING INDICES
2 TERMS TAKING LOG TO SOLVE
MORE THAN 3 BOTH SIDES
COUNT TERMS
TERMS COMPARE INDEX
EXAMPLE MAKE IT AS AN
2x5 4
EQUATION
STEP 1: Count Term
12 9x 10 3x 25 0
STEP 2: Change to similar base STEP 1 : Count Term
2x5 22 1 23
STEP 3: Compare index STEP 2: Change to similar base
x5 2 32x 10 3x 25 0
STEP 4: Solve the equation STEP 3: Make it as an equation
x7 let u 3x
u2 10u 25 0
STEP 4: Solve the equation
u 5u 5 0
u5
3x 5
x log 3 log 5
x 1.47
By: Madam Nuraini Abdullah 3
Kolej Matrikulasi Pahang
Modul I Love Maths
TOPIC :2 EQUATIONS,INEQUALITIES AND ABSOLUTE VALUES
SUBTOPIC: SOLVING INEQUALITIES
INEQUALITIES
LINEAR QUADRATIC RATIO
5x 6 x2 5x 6 2x 3 1 Do not
x2 5x 6 0 x5 cross
6 S1:SIMPLFY multiply
5 x 3x 2 0
x S1:SIMPLFY S2:FACTOR 2x 3
S2:FACTOR x 3, x 2 S3:CN x5
6 S3:CN 1 0
5
, 2x 3x 5
x5 0
S4:GRAPH
x 8 0
x 5
23 Critical Number
(, 2] [3, )
Choose positive x 8, x 5
sign! Shade
right and left of S4:S-LINE
the graph.
x8
x5 , 5 5,8 8,
+ -+
Its important to identify the -5 8
types of Inequalities, either
LINEAR / QUADRATIC /RATIO NOTE!! (5, 8] Choose negative
-5 is a denominator. sign!
to avoid mistakes. Cannot be included ,need
to use open bracket.
By: Madam Nuraini Abdullah 4
Kolej Matrikulasi Pahang
Modul I Love Maths
INEQUALITIES
TOPIC : 2 EQUATIONS,INEQUALITIES AND ABSOLUTE VALUES
SUBTOPIC: SOLVING ABSOLUTE VALUES INEQUALITIES
ABSOLUTE VALUES INEQUALITIES
LINEAR QUADRATIC
5x 6 x2 7x 6 6 S1:DEFINE
S2: SIMPLIFY
x 6 A x 6 x2 7x 6 6 x2 7x 6 6 S3: FACTOR
5 N 5 x2 7x 12 0 S4: CRITICAL NUMBER
x2 7x 0 O S5: GRAPH
D x(x 7) 0 R x 3x 4 0
S6:ANSWERS
x 0, x 7 x 3, x 4 S7:NOM LINE
6 6
5 5
6 6 -7 0 -4 -3
5 5
, C1 :
(, 7] [0, ) O -C5 2 : [4,83]
R
-7 -4 -3 0 S8:FINAL
ANSWER
(, 7]4, 3 [0, )
By: Madam Nuraini Abdullah 5
Kolej Matrikulasi Pahang
Modul I Love Maths
RATIO
1 5
x 1
1 5 A x 1 5 S1:DEFINE
x 1 1 S2: SIMPLIFY
x 1 1 5 0 N x 1 1 5 0 S3: FACTOR
D
S4: CRITICAL
1 5 x 1 0 1 5 x 1 0 NUMBER
x 1 x 1
1 5x 5 0 1 5x 5 0
x 1 x 1
Divide /Multiply 5x 4 0 5x 6 0
with Negative 1 if x 1 x 1
x is negative.
5x 4 0
**CHANGE THE x 1
SIGN!!
x 4 , x 1 x 6 , x 1
5 5 S5: S-LINE
5x 4 , 1 1, 4 4 , 5x 4 , 6 6 , 1 1,
x 1 5 5 x 1 5 5
+
+ -+ +-
1 4 6 1
5 5
S7:NOM LINE
4 AND S6:ANSWERS
5 C1 & C2
(, 1) , ) (, 6 1, )
5
6 1 4 S8:FINAL
5 5 ANSWER
(, 6 4 , ) 6
5 5
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
Modul I Lo
SUMMARY
CHAPTER 1
TYPES BASIC Solve..
OF 1.INDICES
apply 1.INDICES
NUMBE Ex: Simplify 2n-6(4n-3) *count.. …
2.LOG 2terms
COMPLEX 3terms
NUMBERS Ex:
-in form of…….. a)9x+2-3x=8
Ex: b)2x-4=3x+2
c)ex=5
a) =
2.LOG
MODULUS
** BASE
z a2 b2
apply Same Diff
ARGUMENT
1)………….. 1)…
2)………….. 2)
3)……………. 3)…
Ex :2 ln x =ln (6-x)+
3logx3 +log3 3 x
3.SURD 3.SURD Ex:
*use expansion a)√ +
POLAR FORM 5 (a+b)2= b)√ +
= (a-b)2=
z cos i sin c) 2x
√2 − 7
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
ove Maths
Y
CHAPTER 2 BOTH MODULUS
|6 − 2 | > |5 |
**squaring both
sides
INEQUALITY
B LINEAR A LINEAR
A 7-6x < 8x B |7 − 2 | > 5
S S 7-2x>5x OR ………….
I X >…. O
C L QUADRATIC
QUADRATIC U | − 2| ≤ + 5
*coef x2 must be + x-2≤x2+5 AND…….
T X2-x+7≥ 0 ……………
*change sign > /<
E Graph 1 Graph 2
7-6x2 < 3x-4
G 6x2-3x…….0 RATIO
4
ferent Graph 1 2 − 3 ≥ 4 − 3
…………… ………………OR…………..
)………….. RATIO
…………… *coef x2 must be + S-line 1 S-line 2
+ln 3 *change sign > /<
*use table@no line +/- Combine: Shaded7
x =10/3 *if quadratic cannt be
factorized need to use CTS
+ 3 = 7 − 4 & the value is always +
+ 1 − √ − 3=2
−3 − − 1
x1 x1 x 2 ( + 2)( − 3) ≥ 0
S-line 1
Modul I Love Maths
TOPIC :5 FUNCTION AND GRAPHS QUADRATIC CUBIC
SUBTOPIC: SKETCHING GRAPH
BASIC GRAPH
LINEAR
y mx c y x2 y x3
ABSOLUTE VALUE SURD RECIPROCAL
y x y x y 1
EXPONENTIAL LOG x
y ex y ln x
By: Madam Nuraini Abdullah 8
Kolej Matrikulasi Pahang
Modul I Love Maths
There are 6 graph
movement
MOVEMENT QUADRATIC SURD
f (x)
y x2 y x
Original 0 Domain: 0, 0
function Range: 0,
f (x) a Domain: ,
Move: Range:0, y x 5
+ upward
- downward y x2 4
4 -5
Domain: , Domain: 0,
Range: 4, Range: 5,
f (x a) y x 52 y x2
Move: Domain: 5 Domain: -2
- right Range: Range:
+left -1
y x 32 1 y x 1 4
f (x a) b
Move: -3 4
- right
+left Domain: Domain: 1
Move: Range: Range:
+ upward
- downward y x2 y x
f (x)
Reflection on Domain: Domain:
x axis Range: Range:
f (x) y x2 y x
Reflection on Domain: Domain:
y axis Range Range:
By: Madam Nuraini Abdullah 9
Kolej Matrikulasi Pahang
Modul I Love Maths
MOVEMENT MODULUS RATIO
f (x)
y x y 1
x
Original Domain: Domain:
function Range:
Range:
f (x) a y 2x 4 y 1 5
x
Move:
+ upward Domain:
- downward Range:
Domain:
Range:
f (x a) y x3 y 4
Move: x 3
- right
+left Domain:
Range:
Domain:
Range:
f (x a) b y x2 4 y x 1 4 2
Move:
- right Domain:
+left Range: Domain:
Move:
+ upward
- downward
Range:
f (x) y x y 1 1
x 2
Reflection on Domain:
x axis Range:
Domain:
Range:
f (x) y x y 1
2 x
Reflection on Domain: Domain:
y axis Range Range:
By: Madam Nuraini Abdullah 10
Kolej Matrikulasi Pahang
Modul I Love Maths
MOVEMENT EXPONENTIAL LAWN
f (x)
y ex y ln x
Original Domain: Domain:
function Range: Range:
y ln x 5
f (x) a y ex 4
Move: Domain: Domain:
+ upward Range: Range:
- downward y ln(x 2)
f (x a) y ex2
Move: Domain: Domain:
- right Range: Range:
+left y ln(x 1) 2
y ex3 1
f (x a) b Domain:
Move: Domain: Range:
- right Range: y ln x
+left
Move: y ex Domain:
+ upward Range:
- downward y ln(x)
f (x)
Reflection on Domain:
x axis Range:
f (x) y ex
Reflection on Domain: Domain:
y axis Range Range:
By: Madam Nuraini Abdullah 11
Kolej Matrikulasi Pahang
Modul I Love Maths
SKETCHING GRAPH OF EXPONENTIAL
y ex
STEP 1: Quadrant
LOOK AT
The sign of x=
The sign of y=
Choose the quadrant to get the starting point!
STEP 2: Intercept
Find the y intercept When x=0, y=?
STEP 3: Asymptote
Find the asymptote?
STEP 4: Sketch
Don’t hit the asymptote
By: Madam Nuraini Abdullah 12
Kolej Matrikulasi Pahang
Modul I Love Maths
STEPS y ex 1 y log x 3
LOOK AT
The sign of x= The sign of x= - The sign of x= +
The sign of y=
Choose the quadrant to get The sign of y= + The sign of y= +
the starting point!
Choose the quadrant to get the Choose the quadrant to get
starting point! the starting point!
Starting point is at Starting point is at
Quadrant 2 Quadrant 1
y y
x
x
STEP 2: Intercept When x=0, when x = 0, y = not exist
Find the intercept y=e0 +1=2 y when y = 0, x = 4
STEP 3: Asymptote
2 y
STEP 4: Sketch
Don’t hit the asymptote x x
y ex 1 4
Horizontal Asymptote, y = 1
y log x 3
y
Vertical Asymptote,
x-3=0
x=3
y x=3
2
y=1
x
Sketch From left to right x
Don’t hit the asymptote 4
Sketch From top to bottom
y Don’t hit the asymptote
y
2 x
y=1 4
x
By: Madam Nuraini Abdullah 13
Kolej Matrikulasi Pahang
Modul I Lo
FIND INVERSE?? Show 1-1 f
f f 1
Function METHOD 1 f 1(x)
f (x) x 4 f (x1) f (x2 ) f 1(
f 1(
x1 4 x2 4
x1 x2 f f 1(x
f f 1(x)
METHOD 2 f 1(x)
f 1(x)
f(x) 4 HLT
f 1(x
4
f :x x 2,x 2 By using horizontal line test it
cut the graph at 1 point.Thus
f(x) is 1-1 function.
METHOD 1
f (x1) f (x2 )
x1 2 x2 2
x1 2 x2 2
x1 x2
METHOD 2 f(x)
HLT
-2
By using
horizontal line test it cut the
graph at 1 point.Thus f(x) is 1-1
function.
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
ove Maths
1 x Graph f and f-1 Df, Rf Df-1, Rf-1
1(x) x f(x) 4 Df , Rf 1
4 x 4 Rf , Df 1
(x) x 4
(x) x 4 f-1(x)
x) x f(x) Df 2 , Rf 1
) x Rf 0 , Df 1
2x -2
2 x2 -2 f-1(x)
x) x2 2
x0
14
Function Show 1-1 Modul I Lo
g(x) x2 2x, x 1 f
g(x) = ex + 3 METHOD 1
f (x1) f (x2 )
ex1 3 ex2 3 f f 1(x)
ex1 ex2 f f 1(x)
ln ex1 ln ex2
x1 x2 e f 1 ( x) 3
e f 1 ( x)
METHOD 2
ln e f 1 ( x)
f(x) f 1(x)
HLT
By using horizontal line test it
cut the graph at 1 point.Thus
f(x) is 1-1 function.
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
ove Maths Sketch Graph f and f-1 Df, Rf Df-1, Rf-1
1 x
)x f(x) 4 Df , Rf 1
x 3
3 x Rf 3, Df 1
) x3 34
) ln x 3 f-1(x)
) ln x 3
x=3
Vertical asymptote
15
Function Show 1-1 Modul I Lo
f ( x) ln(x 1)
f
f (x) 2x 1 , x 1
2
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
ove Maths Sketch Graph f and f-1 Df, Rf Df-1, Rf-1
1 x
16
Function Show 1-1 Modul I Lo
f
f (x) x 1
x3
f(x) = 2+ e2x
f (x) ln(x 3)
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
ove Maths Sketch Graph f and f-1 Df, Rf Df-1, Rf-1
1 x
17
Modul I Lo
BASIC GRAPH
FIND DOMAIN RANGE?
F
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
ove Maths
BASIC GRAPH LOG AND EXPONENTIAL
Find Domain Range?
FUNCTIONS FIND INVERSE
HOW TO DETERMINE 1-1
SKETCH F(X) AND INVERSE
Domain and Range f(x) and f-1(x)
18
TOPIC: 8 LIMITS Modul I Lo
LIMITS
SUBSTITUTE
0 number number
0 0
factorize X conjugate
lim 6 1 lim 4 x
x1 x 1 x2 x 2
lim x2 5 2
x2 4 0 0
x2
lim x x 2 2 lim x 1
x2 2 x x1 x 1
lim x 1 2 lim x 1 x 1
x1 x 1 x 1
x2
1 x 1 x 1
4
lim
x1 x 1 x2
lim x 1
x1
2
By: Madam Nuraini Abdullah
Kolej Matrikulasi Pahang
ove Maths
CONTINUITY
0 asymptote f (x)is said to be continuous
at x a if it satisfy the
following condition
i)f (a)is defined
ii) lim f (x)exists
xa
iii) lim f (x) f (a)
xa
Factorize the highest power
lim 3x2 1 lim 3x 1 HV
x2 1 x x2 1 oe
x rr
it
x2 3 1 x 3 1 zi
x2 x2 x oc
lim 1 lim na
1 x2 x 1 tl
x x2 1 x2 a
l
30
1 0
3 x 3 1
x
lim
x 1
x 1 x2
x, x 0
x x, x 0
lim 3 0 3
x 1 1 0
19
Modul I Love Maths
TOPIC:9 DIFFERENTIATIONS
PROBLEMS: HOW TO DIFFERENTIATE?
METHOD:
GENERAL POWER RULE DIFFERENTIATE LAWN
y 2x 65 y ln x2 5
METHOD METHOD
Sing: y ln x2 5
Bring down power
Tips!!
Reduce power 1.Use law of logarithm
Differentiate bracket 2.Put a slash / on n
Example 1 (the letter l seems like number 1)
easy to remember 1 / (…)
y 2x 65
3.Then write number 1 and 2 on the top
dy 52x 64 2 4.Proceed to step 2, differentiate bracket
dx Example 1
12
y ln x2 5
Bring down power Put a slash / on n and it become 1/ x 2 5
Reduce power
Differentiate dy l (2x)
x2 5
bracket dx
Move to 2nd step: Differentiate bracket
Example 2 Example 2 12
y 4 cos 3 y 4 ln 3x5 2
dy 4 3 cos 2 sin
dx
Put a slash / on n and it become 1/ x 2 5
Bring down power
Reduce power 4
Differentiate 3x5 2
bracket dy (15x4 )
dx
Move to 2nd step: Differentiate bracket
By: Madam Nuraini Abdullah 20
Kolej Matrikulasi Pahang
Modul I Love Maths
DIFFERENTIATE TRIGO DIFFERENTIATE EXPONENTIAL
y sin 3x 4 y e2x2 5
METHOD METHOD
Tips!! Use ACRONIM DI-CO-DI Tips!! Use ACRONIM CO-DI-PO-LN
1.Copy the exponent
1. Write number 1 and 2 on the top 2.DIfferentiate POwer
3.LAWN base
2. Differentiate nom 1,
3. Copy angle
4. Differentiate nom 2
Example 1 12 Example 1 y e2x2 5
y sin 3x 4 dy e2x2 5 (4x) ln e
dx
dy
dx cos 3x 4.3 1.Copy the exponent
2.DIfferentiate POwer
3.LAWN base
Differentiate nom 1
Copy angle
Differentiate
Nom 2
Example 2 12 Example 2 y 32x2
y cos x2 3 dy 32x2 2xln 3
dy sin x2 32x dx
dx
1.Copy the exponent
2.DIfferentiate POwer
3.LAWN base
Differentiate nom 1
Copy angle
Differentiate
Nom 2
By: Madam Nuraini Abdullah 21
Kolej Matrikulasi Pahang
Modul I Love Maths
IMPLICIT DIFFERENTIATION
1ST DERIVATIVE
x 52 y3 7x 6y
2x 51 3y2 dy 7 6 dy S1:Differentiate each terms with respect to
dx dx
x
dy dy dy
3y2 dx 6 dx 7 2x 51 S2: Collect dx on the left
dy dy
dx
dx
3y2 6 7 2x 10 S3: Factorize
dy 17 2x S4:Make dy as a subject
dx 3y2 6 dx
2nd DERIVATIVE
dy 17 2x u
dx 3y2 6 v
u 17 2x v 3y2 6
u ' 2 v ' 6 y dy
dx
d2y vu ' uv '
dx2 v2
d 2 y3y2 6 2 17 2x 6 y dy dy
dx2 dx dx
S1:Differentiate
3y2 6 2
6 y2 12 102 y dy 12 xy dy
dx dx
3y2 6 2
6 y2 12 102 y 17 2x 12 xy 17 2x S2:Substitute dy
3y 2 6 3y2 6 dx
3y2 6 2
18 y3 36 y 36 y2 72 1743 y 408xy 24 x 2 y d2y
3y2 6 2 S3: Simplify dx2
By: Madam Nuraini Abdullah 22
Kolej Matrikulasi Pahang
Modul I Love Maths
PARAMETRIC DIFFERENTIATION
1ST DERIVATIVE
x 4 t3 y t2 2t 2 S1:Differentiate x and y with respect to t
dx 3t 2 dy 2t 2
dt dt
dy dy dt S2: Form a Chain Rule dy dy dt
dx dt dx dx dt dx
dy 2t 2 1 S3: Substitute into Chain Rule formulae
dx 3t 2
dy 2t 2 2 t 2 2 t 1 S4: Simplify
dx 3t 2 3 3 2nd DERIVATIVE
d2y d dy dt S1: Form a Chain Rule d2y d dy dt
dx2 dt dx dx dx2 dt dx dx
d2y d 2 t 2 2 t 1 1 S2: Differentiate dy and multiply with dt
dx2 dt 3 3 3t 2 dx dx
d2y 4 t 3 2 t 2 1
dx2 3 3 3t 2
4 2 1
3t 3 3t 2 3t 2
42
9t5 9t 4
4 2t S3: Simplify
9t 5
By: Madam Nuraini Abdullah 23
Kolej Matrikulasi Pahang