HEAT TRANSFER
(HMT - I : SOLUTIONS)
1) Rth ln r2 /r1
2KL
Rth q
T
T qx 2KL
ln r2 /r1
T is the loqarithmic function of radius.
2) 1
n
3) (b)
4) (d)
5) (c)
6) Pr t v
v e
t
Pr ,
t
t
7) (b)
8) for bray body,
f ()
b
9) (b)
10) (b)
Page 1 of 9
11) rc K
n
0.174
8.722
rc 0.01994m
= 19.95 mm
R = 3.25
rc r thickness
= 16.7 mm
12) Ans (a) P= 13529 Kg/m3,
T = 300K,
cP = 1329.3 W/kgK
0.1523 x 10-2 N-s/m2 ,
k = 8.54 W/mK
Pr cp 0.0248
k
Note :
For liquid metals Pr < 01
Liquid mercury is molten metal hence is should have Pr < 0.1.
13)
Page 2 of 9
LMTD Ti Te
ln Ti
Te
LMTD (80) (80)
ln 80
80
LMTD
for LMTD Ti or Te
LMD = 80
14) Ans. 42.22 sec (range 42.0 to 42.5)
Boit Number = hLc
K
For sphere Lc = Volume d
surfacearea 6
Bi = hd 1000 x 0.01 0.0416 0.1
6k 6 x 40
Hence lumped heat analysis is used.
T T hAsT t
Ti T
e VCP ets
Thermal time constant
ts VC 16 sec
hAs
Page 3 of 9
1305000330000 t t 42.2249 s
e16
15) i h.A.(ti t)eBi.F0
Bi hLc 120 x 0.015
K 6 x 42
= 7.142x10-3
F0 L 0.045 x
L2 (2.5x103 )2
F0 0.045 x 0.0333 239.76
(2.5x103 )2
8. W
16) Given , T0 = 500 K, T = 300 K
D = 5x10-3 m, K = 400 W/mK
9000kg / m3, CP = 385J/kg K
H = 250 W/m2 K
T = T + (T0 - T ).e- / *
dT (T0 T )e / * x 1
d 0 *
Rate of cooling at beginning is
dT (T0 T ) .e0
d 0 *
T0T 500 300
*
.V .CP
h.As
Page 4 of 9
500 300
5x103 385
9000x 6 x 250
= 17.31 sec s
For sphere, V R d
As 3 6
(Note –ve sign Indicates cooling)
17) (d)
18) q1 (T14 T24 )
1 1 1
1 2
(T14 T24 ) K
3
1 1 1
0.5 0.5
q2 K K
7
1 1 1
0.25 0.25
q2 q1 x 100
q1
K K
7 3
x 100
K /3
57%
19) Total thermal resistance
2n x 1 (n 1) x 1 + 1 1
2x6x 1 0.05 (7 1) 1 0.2 1 0.6
0.05 0.2 0.6
= 239.667
Page 5 of 9
20)
Ans. (b)
21) 0 5kg , Tci = 250L
sec
mc
Cpc = 4.2 , Cph = 15 ,
Thi = 300 , min = 1.4
NTUp = NTU)c = 5
0
(m .cp)small
C 1
0
(m .cp)big
So
llel 1 e2 NTU
2
= 0.5
counter NTU 5
1 NTU 6
= 0.833
coun 1.67
parallel
22) a K. dT
dx
0.51 x (600 35)
220 x 10-3
Page 6 of 9
57.95 58
23)
U 1 1 1
L
ni K n0
U = 1800.84 W/m2 0C
24) Dn 4A
p
25) All the properties are taken at mean value so
Tmean 40 20 300 C
2
Entering temp. = 200C
Leaving temp. = 400C
26) (b)
Page 7 of 9
27) (d)
Qs = 1kW/m3 = 1000W/m3
T = A + Bx + Cx2, A = 9000C
B = -2000C/m, C = - 500C/m2
A = 10m2, k = 40W/mk
. k.A T
x
Q
x0
T B 2Cx
x
T B (200)
x x0
. 40 x 10 x (-200) = 80000 = 80 kW
Q
x0
28) (d)
T = A + Bx + Cx2
At x = 0, T = A = 9000C
At x = 1, T = 900 + (-200) – 50
= 900 – 250 = 6500C
Energy balance
. . + . = .
Q Q gen Q stored Q
x 0 x L
Page 8 of 9
.
80 10 Q stored 120
stored 120 90 30kW
29) Q = heat transfer by radiation
Q A (Ts4 T4 ) =1 for black body
Q 1 x 5.67 x 10-8 x (4734 - 3734 )
A
Q 1740.52w / m2
A
30) using radiation heat transfer coefficient
Q hrA(Ts T )
Q hrA(Ts-T) 1740.52=hr(200-100)
A
hr 17.4 w/m2-0c
Combined heat transfer coefficient for convection & Radiation
hc + hr = 30
hc 30 17.4 12.6w / m2 0 c Ans.
********************
Page 9 of 9