FLUID MECHANICS
(FM - I : SOLUTIONS)
1) (c)
2) (a)
du
dy
y0
At seperation, du 0
dy
y0
0
3) (b)
h (V1 V2 )2
2g
From continuity,
A1V1 = A2V2
1002 x 5 = 2002 x V2
5 V2
4
h = 0.717 m
4) 60 to 80
5) (b)
Page 1 of 9
.a.(v u)2
= 1000 x 0.015 x (10)2
= 1500 N
6) (b)
7) Sp. Speed for 4 Nozzle
= 20
8) (a)
9) Ans. (c)
According to Newton’s law of viscosity, a Newtonian fluid is one type of fluid, in
which shear stress is proportional to rate of shear strain (i.e. velocity gradient).
dv
dy
10) Q1 1 cos 3
Q2 1 cos 1
11) Ans. (b)
K (P2 P1) (P2 P1) P2 P1
v1 v2
dv v2 v1
v1 v1
v1
K 80 40 2000MPa
2 1.96
2
12) Ans. (c)
In Laminar flow through a long pipe, the pressure drop (hf ) 32.V .L
g.D2
Page 2 of 9
Pressure drop per unit length 32.V
g.D2
hf 1
L D2
Pressure drop per unit length is inversely proportional to the cross – sectional area.
13) Ans. (b)
For a stable floating body the Metacentric height is positive, hence Metacentre should
be above centre of gravity of the floating body.
14) Ans : 0.25 (range 0.24 to 0.26)
Ns N P
5
H4
Given, Ns1 = Ns2 , H1 = H2,
N1 2, P1 ?
N2 P2
N1 P1 N2 P2
P1 N1 2 1 2 0.25
P2 N2 2
15) d 20cm, Vmax = 1 m/sec, Vr = 2
V 1 r2
Vmax R2
1 25
100
Vr = 0.75 m/sec
16)
2xy
d v d u
dx dy
Page 3 of 9
2y = v , u = -2x
V U2 V2
4x2 4y2
4 16
20
2 5
17)
QM 2
QN
hf FLV 2 = fLQ2
2qd 12.1gd 5
Q hf x 12.1 x g x d5 1/2
f .L
QM fN 1/ 2
QN fM
1 1/2 1 0.5
4 2
18) wz = 0,
wz 1 dv dv
2 dx dy
Page 4 of 9
wz 1 2 y 2x
2
19) p1 V12 z1 p2 V22 z2
g 2g g 2g
h v22
2g
h y Sm 1
sp
0.20 9810 1
10.8
h = 181.46 m
V2 = 59.66 m/sec
Q A2V2 x (0.15)2 x 59.66
4
= 1.05m3/sec
1 Liter = 10-3 m3
Q = 1054 LPs
20) Ans. 15.7
By Newton’s law of viscosity
. V
h
F .Vh F
A
F ( DL) V
h
F (0.1)x( x0.1x0.1) (10)
(0.002)
=15.7 N
Page 5 of 9
21)
hf (V1 V2 )2 4 2 .m
2g 2g g
V1 0.3 3 m / s
0.1
V2 0.3 1 m / s
0.3
Q A1V1 A2V2
22) Ans. : 26.4 (26.3 to 26.5)
F V 0.44x3 26.4N / m2
A y 50x10-3
23) du dv 0
dx dy
(1) 2x cos y + (-2x) . cos y = 0
(2) 1 (1) 0
24) Q Q
D3N m D3 N P
40 x 103 0.8
103 x 1000 403 x N
N 0.8 x 103 x 1000
40 x 10-3 x 403
N = 312.5 rpm
25) Ans. (b)
Page 6 of 9
m Q
dA.U
. B . dy .U y ydy
.B
0
.B.U y2 .B U . 2
2 2
0
1 ..B.U
2
1 x1x1x10x(10x10-3 )
2
= 0.05 kg/sec
26) Ans. (c)
L
Integrated drag fore (FID ) = .Bdx
0
Where
u2 6
(for linear velocity distribution)
Proof : momentum thickness
u 1Uu dy
0 U
y 1 y dy
0
y2 y3
2 3 2 0
6
.u2.
Page 7 of 9
1 x (10)2 x 10x10-3
6
= 0.167 N say 0.17 N
27 )
P .L.V
t
Q=AxV
40 x 10-3 = x (0.2)2 x V
4
V 1.273 m
sec
P 1000 x 1000 x 1.273
11.25
= 113.155 KPa
28)
n Pd 113.155 x 0.2 x 103
2t 2 x 10 x 10-3
= 1.13 MPa
29 )
d = 300 mm, t = 6 mm
V = 3m/sec , E = 2 x 105 MPa
K = 2000 MPa
P 1000 kg
m3
Page 8 of 9
P V K.P 3 x 2000 x 1000
4242 KN
m2
30) P V x P
1 1
k Et
3x 1000
1 0.3
2000 x 106 2 x 105 x 106 x 0.006
= 3464 . KN/m2
**************************
Page 9 of 9