STRENGTH OF MATERIALS
(STM - I : SOLUTIONS)
1) Maximum bending moment depends upon to the magnitude & position of UDL &
concentrated point load. So ans (d)
2) Modulus of resilience Area under & upto elastic limit
= 1 x 250 x 0.002
2
= 0.25 MPa
3)
1 PL3
3EI
1 12PL3
3Ebd 3
I bd 3
12
2 3E 12PL3 12PL3
x 2b x d3 163Ebd 3
2 1 1
16
2 6.25% 2
Page 1 of 12
4)
1 (D 4P a) 4P a2 )
a)(D (D2
Using Mean dia. D
2 4P
D2
1 2 x 100%
1
So Error
4P 4P
x (D2 -a2 ) D2
x 100%
4P
(D2 a2)
D2 D2 a2 x D2 a2 x 100%
(D2 a2) x D2 1
Error a2 x 100% = 10a 2
D2 D
5) t1 = 2t2 , d1 = 3d2
P1 = P2 = P
1 Pd1
4t1
2 Pd2
4t2
1 d1 x t2 3d2 x t2 3
2 t1 d2 2t2 d2 2
Page 2 of 12
6)
B BA AO
0 AO
No Torque in member BA so No twist.
AO T.L / 2 TL
GJ 2GJ
7)
1 WL3
48EI
2 5 WL4 5 WL3
384 EI 384 EI
1 24
2 15
8) (c)
9) (c)
Page 3 of 12
10) Euler’s theory is useful for long column only.
11) P1 = P2
N1T1 = N2T2
N.T N .T2
2
T2 = 2T
12) Solid shaft Hollow shaft
s = H
13) 1 2 3 0
14)
Z circle D3 , Z Rect = bd 2
32 6
D2 = d2 + b2 , d2 = D2 - b2
(Z rec)N.A. = b(D2 b2 )
6
dzrec 0, for efficient section
db
D2 3b2 0
6
D2 = 3b2
Page 4 of 12
D 3b , b 1
D 3
d2 = 2b2
d 2
b
15) 16T , b = 32M
d3 d3
16T T
b 32M 2M
16) (c)
At top Fibre
ONLY tensile stress outing will be zero
( )shear stress At atove the N.A. both max & acts so
Page 5 of 12
17)
at point B 1 total deflection is zero
WL3 (wa)L2
3EI 2EI
a 2
3L
18) So, according to Maxwe-ll Reciprocal thermal both statements are correct but R is not
correct explanation of A.
19)
AB 1
BC 2
20)
Page 6 of 12
1 (P R)(3a)3
3EI
2 Ra3
3EI
1 2
(P R) x 27a3 R x a3
3EI 3EI
R 27P
28
So = 27P x a3 = 9Pa3
28 x 3EI 28EI
21)
b M E
Y I R
Y 0.5 0.25
2
Page 7 of 12
b 200 x 103 x 0.25 250MPa
200.25
22) Tc = 0.662 W,
Ts = 0.338 W
23)
t y x
t E E
= 40 0.3 x 60
200 x 103 200 x 103
t 0.022 0.03 mm
24)
MB P , MC P , MD P
4 8 4
Looking the given ans & given diagram it is clear that at a there is no reaction & there is a
support so at A, a force of Maq. Is acting so that
Page 8 of 12
MB P P
4 4
Mc P x 2.5 + P x 1.5 = P
4 2 8
Because Reaction at RA < RB
RA RB Total Vertical load
2
RA RB P
2
25) spring 2
0
zfy = 0 ,
RA + RC = 10 KN
RA = RC = 5 KN
Page 9 of 12
Simple supported beam with central load
K. = RC
500. = 5000
= 10 mm
26)
M = 5x2 + 20x – 7
dM 10x 20
dx
dM S.F.
dx
S.F at x 2
= 40 N
27)
RA + RB = 2 KN
MA 0 ,
R x 4 – 1x2 – 1 x 6 = 0
Rx4=8
R=2
R=0
Page 10 of 12
B A 1 1 x 2m x2 x kN.m
EI 2
2
EI
28) Cantilever beam subjected to moment as free end
Deflection ML2
2EI
29)
width = bx = x.b
L
I bx t 3 xbt 3
12 12L
30)
U t M 2 dx
0 x
2 EI x
1 Mx 2M x dx
EI 2P
Use Mx = Px
2M x x and use I = xbt 3
2P 12l
12 l Px.x dx
E 0 bxt 3
12P l xdx
EBt 3 0
Page 11 of 12
12Pl x2 l 12 Pl 3 6 Pl 3
EBt 3 2 EBt 3 Ebt 3
2 0
*****************
Page 12 of 12