1.6 Absolute Value Functions
(i) Absolute value of x = |x|, read as ‘the modulus of x’.
(ii) |x|is the numerical value of x.
For example: |5|= 5 and |–5|= 5
Example:
1 Given the function f : x 4x 11 , find
(a) the image of 1,
f (x) 4x 11
f (1) 4(1) 11
4 11
7
7
The image of 1 is 7.
(b) the image of 5,
f (5) 4(5) 11
20 11
9
9
The image of 5 is 9.
(c) the objects that have the image 13.
f (x) 13
4x 11 13
4x 11 13
4x 11 13 or 4x 11 13
4x 13 11
4x 13 11 4x 2
x 2 1
4x 24 42
x 24 6
4
The objects that have the image 13 are 6 and 1 .
2
2 Given the function f (x) 2 5x , find
(a) the image of 2,
(b) the objects that have the image 7.
1.7 Composite Functions
Example:
1 The functions f and g are defined by f : x 2x 1 and
g : x x2 2 respectively. Find
(a) the value of fg(3) ,
(b) the value of gf (2) .
(a) fg(3) f g3 object
f 32 2 g(x) x2 2
g(3) 32 2
f 7
27 1 object
15 f (x) 2x 1
(b) gf (2) g f 2 f (7) 27 1
g 2 21
g 3
32 2
7
2 Find the composite functions fg and gf for the following pairs of
functions f and g .
(i) f : x x2 1 and g : x 3x 1 fg fg(x)
gf gf (x)
(ii) f :x 2x and g:x 1
x2 2
1. Given the function f x 2 , x 0, , find the composite function f 2.
x
2. The functions f and g are defined by f : x x 12 and g : x x 2
resprctively. Find the composite functions of
(a) fg
(b) gf
Can u find out the difference?
1 kx x 4 4 hx x 1
2 f x 1 3x 2 5 f x x2 5
3 hx x2 2x 1 6 g2x x2 x 3
2 f x 1 3 x 2 f y 3y 1 2
object 3y 3 2
3y1
2 f x 1 3 x 2
f x 3 x 1
let x 1 y ,
x y 1
f y 3y 1 2
3y 3 2
3y 1
f x 3x 1
6 g2x x2 x 3 g x x 2 2 x 12
4
let 2x y ,
x y
2
g2x x2 x 3
gy y 2 y 3
2 2
y2 y 3
42
y2 2 y 12
4
gx x2 2x 12
4