The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

แผนการจัดการเรียนรู้เรื่องเซต

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by krailass, 2023-05-30 23:54:57

แผนเรื่องเซต

แผนการจัดการเรียนรู้เรื่องเซต

หน่วยการเรียนรู้ที่ 1 เซต 1 หน่วยการเรียนรู้ที่ 1 เซต เวลา 14 ชั่วโมง 1. ผลการเรียนรู้ เข้าใจความหลากหลายของการแสดงจำนวน ระบบจำนวน การดำเนินการของจำนวน ผลที่เกิดขึ้นจากการ ดำเนินการ สมบัติของการดำเนินการ และนำไปใช้ 1. เข้าใจและใช้ความรู้เกี่ยวกับเซต ในการสื่อสารและสื่อความหมายทางคณิตศาสตร์ 2. สาระการเรียนรู้ 2.1 สาระการเรียนรู้เพิ่มเติม 1) ความรู้เบื้องต้นและสัญลักษณ์พื้นฐานเกี่ยวกับเซต 2) ยูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต 2.2 สาระการเรียนรู้ท้องถิ่น (พิจารณาตามหลักสูตรสถานศึกษา) 3. สาระสำคัญ/ความคิดรวบยอด การเขียนเซตมีสองแบบ คือ เขียนแบบแจกแจงสมาชิก และเขียนแบบบอกเงื่อนไขของสมาชิก ชนิดของ เซตประกอบด้วย เซตว่าง เซตจำกัด และเซตอนันต์ การเท่ากันของเซต การหาสับเซตและเพาเวอร์เซต การใช้ แผนภาพเวนน์ในการอธิบายเซต การดำเนินการของเซตประกอบด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ และผลต่าง ซึ่งนำมาใช้ในการสื่อสารและสื่อความหมายทางคณิตศาสตร์และแก้โจทย์ปัญหาได้ 4. สมรรถนะสำคัญของผู้เรียนและคุณลักษณะอันพึงประสงค์ สมรรถนะสำคัญของผู้เรียน คุณลักษณะอันพึงประสงค์ 1. ความสามารถในการสื่อสาร 2. ความสามารถในการคิด 1) ทักษะการระบุ 2) ทักษะการคิดคล่อง 3) ทักษะกระบวนการคิด 4) ทักษะกระบวนการคิดแก้ปัญหา 3. ความสามารถในการแก้ปัญหา 4. ความสามารถในการใช้ทักษะชีวิต 1. มีวินัย 2. ใฝ่เรียนรู้ 3. มุ่งมั่นในการทำงาน


หน่วยการเรียนรู้ที่ 1 เซต 2 5. ชิ้นงาน/ภาระงาน (รวบยอด) - ผังมโนทัศน์ หน่วยการเรียนรู้ที่ 1 เซต 6. การวัดและการประเมินผล รายการวัด วิธีวัด เครื่องมือ เกณฑ์การประเมิน 6.1 การประเมินชิ้นงาน/ ภาระงาน (รวบยอด) - ตรวจผังมโนทัศน์ หน่วยการเรียนรู้ที่ 1 เซต - แบบประเมินชิ้นงาน/ ภาระงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 6.2 การประเมินก่อนเรียน - แบบทดสอบก่อนเรียน หน่วยการเรียนรู้ที่ 1 เรื่อง เซต - ตรวจแบบทดสอบ ก่อนเรียน - แบบทดสอบก่อนเรียน - ประเมินตามสภาพจริง 6.3 การประเมินระหว่าง การจัดกิจกรรม 1) ความรู้เบื้องต้น เกี่ยวกับเซต - ตรวจใบงานที่ 1.1 - ตรวจแบบฝึกทักษะ1.1 - ตรวจ Exercise 1.1 - ใบงานที่ 1.1 - แบบฝึกทักษะ 1.1 - Exercise 1.1 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 2) เอกภพสัมพัทธ์ - ตรวจแบบฝึกทักษะ 1.2 - ตรวจ Exercise 1.2 - แบบฝึกทักษะ 1.2 - Exercise 1.2 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 3) สับเซตและเพาเวอร์เซต - ตรวจใบงานที่ 1.2 - ตรวจแบบฝึกทักษะ 1.3 - ตรวจ Exercise 1.3 - ใบงานที่ 1.2 - แบบฝึกทักษะ 1.3 - Exercise 1.3 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 4) แผนภาพเวนน์ - ตรวจแบบฝึกทักษะ 1.4 - ตรวจ Exercise 1.4 - แบบฝึกทักษะ 1.4 - Exercise 1.4 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 5) การดำเนินการของเซต - ตรวจใบงานที่ 1.3 - ตรวจแบบฝึกทักษะ 1.5 - ตรวจ Exercise 1.5 - ใบงานที่ 1.3 - แบบฝึกทักษะ 1.5 - Exercise 1.5 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 6) จำนวนสมาชิกของ เซตจำกัด - ตรวจแบบฝึกทักษะ 1.6 - ตรวจ Exercise 1.6 - ตรวจแบบฝึกทักษะ ประจำหน่วยการเรียนรู้ ที่ 1 - แบบฝึกทักษะ 1.6 - Exercise 1.6 - แบบฝึกทักษะประจำ หน่วยการเรียนรู้ที่ 1 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์


หน่วยการเรียนรู้ที่ 1 เซต 3 รายการวัด วิธีวัด เครื่องมือ เกณฑ์การประเมิน 7) การนำเสนอผลงาน - ประเมินการนำเสนอ ผลงาน - แบบประเมินการ นำเสนอผลงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 8) พฤติกรรมการทำงาน รายบุคคล - สังเกตพฤติกรรม การทำงานรายบุคคล - แบบสังเกตพฤติกรรม การทำงานรายบุคคล - ระดับคุณภาพ 2 ผ่านเกณฑ์ 9) พฤติกรรม การทำงานกลุ่ม - สังเกตพฤติกรรม การทำงานกลุ่ม - แบบสังเกตพฤติกรรม การทำงานกลุ่ม - ระดับคุณภาพ 2 ผ่านเกณฑ์ 10) คุณลักษณะ อันพึงประสงค์ - สังเกตความมีวินัย ใฝ่เรียนรู้ และมุ่งมั่นใน การทำงาน - แบบประเมิน คุณลักษณะ อันพึงประสงค์ - ระดับคุณภาพ 2 ผ่านเกณฑ์ 6.4 การประเมินหลังเรียน - แบบทดสอบหลังเรียน หน่วยการเรียนรู้ที่ 1 เรื่อง เซต - ตรวจแบบทดสอบ หลังเรียน - แบบทดสอบหลังเรียน - ร้อยละ 60 ผ่านเกณฑ์ 7. กิจกรรมการเรียนรู้ • เรื่องที่ 1 : ความรู้เบื้องต้นเกี่ยวกับเซต แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : Concept Based Teaching เวลา 2 ชั่วโมง • เรื่องที่ 2 : เอกภพสัมพัทธ์ แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : แบบอุปนัย (Induction) เวลา 1 ชั่วโมง • เรื่องที่ 3 : สับเซตและเพาเวอร์เซต แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : Concept Based Teaching เวลา 2 ชั่วโมง • เรื่องที่ 4 : แผนภาพเวนน์ แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : แบบอุปนัย (Induction) เวลา 1 ชั่วโมง • เรื่องที่ 5 : การดำเนินการของเซต แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : แบบอุปนัย (Induction) เวลา 4 ชั่วโมง • เรื่องที่ 6 : จำนวนสมาชิกของเซตจำกัด แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : Concept Based Teaching เวลา 4 ชั่วโมง (รวมเวลา 14 ชั่วโมง)


หน่วยการเรียนรู้ที่ 1 เซต 4 8. สื่อ/แหล่งการเรียนรู้ 8.1 สื่อการเรียนรู้ 1) หนังสือเรียนรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 2) แบบฝึกหัดรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 3) ใบงานที่ 1.1 เรื่อง ความรู้เบื้องต้นเกี่ยวกับเซต 4) ใบงานที่ 1.2 เรื่อง สับเซตและเพาเวอร์เซต 5) ใบงานที่ 1.3 เรื่อง การดำเนินการของเซต 8.2 แหล่งการเรียนรู้ 1) ห้องเรียน 2) ห้องสมุด 3) อินเทอร์เน็ต


หน่วยการเรียนรู้ที่ 1 เซต 5 แบบทดสอบก่อนเรียน หน่วยการเรียนรู้ที่1 คำชี้แจง : ให้นักเรียนเลือกคำตอบที่ถูกต้องที่สุดเพียงข้อเดียว 1. เซตของจำนวนนับที่หารด้วย 5 แต่มีค่าไม่เกิน 50 คือข้อใด ก. {…, −10, −5, 0, 5, 10, … } ข. { 0, 5, 10, … } ค. { 5, 10, 15, … ,45} ง. { 5, 10, 15, … , 50} 2. เซตของจำนวนนับที่สอดคล้องกับสมการ (x − 1)(x + 2)(x − 3)(2x − 1) = 0 ก. {−2, 1, 3, 1 2 } ข. {−2, 1, 3} ค. {1, 3} ง. { 1, 3, 1 2 } 3. กำหนดให้ A = {1, 2,{3, 4}} พิจารณาว่า ข้อความใดต่อไปนี้ไม่ถูกต้อง ก. {1, 2} ∈ A ข. 2 ∈ A ค. {3, 4} ∈ A ง. 3 ∉ A 4. กำหนดให้ A = {2, 4, 6, … } พิจารณาว่าข้อความ ใดต่อไปนี้ถูกต้อง ก. A เป็นเซตของจำนวนนับ ข. A เป็นเซตของจำนวนคู่ ค. A เป็นเซตของจำนวนคู่บวก ง. A เป็นเซตของจำนวนเต็ม 5. ให้ A = {3, 4} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. A ⊂ {3, 4} ข. {3} ⊂ A ค. A ⊂ {3, 4, 5} ง. {34} ⊂ A 6. ให้ A = {5,{5} } ข้อใดต่อไปนี้ถูกต้อง 1. {5} ∈ A และ {5} ⊂ A 2. สับเซตทั้งหมดของ A คือ ∅,{5},{{5}} และ A ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2.ถูก ง. ข้อ 1. และ 2. ผิด 7. ให้ A = {1, 2,{2}} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. {2} ∈ P(A) ข. {1, 2} เป็นสับเซตแท้ของ A ค. {{2},∅} ∈ P(A) ง. P(A) มีจำนวนสมาชิก 8 ตัว 8. กำหนดให้เอกภพสัมพัทธ์ คือเซตของจำนวนจริง ข้อใดต่อไปนี้ไม่ใช่เซตว่าง ก. {x|x เป็นจำนวนนับ ซึ่ง x 2 − 5 = 0} ข. {x|x เป็นจำนวนเต็ม ซึ่ง 0 < x < 1} ค. {x|x เป็นจำนวนคู่ซึ่ง x 2 − x = 0} ง. {x | x 2 + 4 = 0} 9. ข้อใดเป็นเซตว่าง ก. {∅} ข. {x ∈ N | x 2 + 7x = 0} ค. {x ∈ I | x 2 + 7x = 0} ง. {x ∈ I −| x 2 + 7x = 0} 10. ข้อใดต่อไปนี้เป็นเซตอนันต์ ก. เซตของจำนวนเต็มลบที่มากกว่า – 20 ข. เซตของจำนวนเต็มบวกที่น้อยกว่า – 5 ค. เซตของจำนวนคี่ที่น้อยกว่า 20 ง. เซตของจำนวนนับที่น้อยกว่า 15 11. ข้อใดต่อไปนี้ถูกต้อง 1. {1, 2, 3} = {1, 1, 2, 3, 3} 2. {1, 2, 3} = {123} ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด


หน่วยการเรียนรู้ที่ 1 เซต 6 เฉลย 1. ง 2. ค 3. ก 4. ค 5. ง 6. ก 7. ค 8. ค 9. ข 10. ค 11. ข 12. ง 13. ง 14. ค 15. ข 16. ค 17. ก 18. ค 19. ข 20. ค 12. ให้ A = {x | (x − 2)(x − 5)(x − 25) = 0} และ B = {2, 5} ข้อใดต่อไปนี้ถูกต้อง 1. A = B 2. A มีจำนวนสมาชิกเท่ากับ B ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด 13. กำหนดให้ A = {1, 2, 3, … ,9} , B = {1, 3, 5, 7, 9} และ C = {2, 4, 6, 8} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. A ∩ B = B ข. A − B = C ค. B − C = A − C ง. A − (B ∪ C) ≠ ∅ 14. กำหนดให้ U = {1, 2, 3, … ,20} , A = {2, 4, 6, … ,18} , B = {1, 3, 5, 7, … , 19} และ C = {4, 5, 6} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. A ∩ B ′ = A ข. A ′ − B = {20} ค. A − (B ∪ C) = A ง. (A ∪ B) ′ ≠ ∅ 15. กำหนดให้ U = N , A = {2, 4, 6, 8, 10} , B = {1, 2, 3, … , 10} และ C = {1, 3, 5, 7, 9} ข้อใดต่อไปนี้ถูกต้อง ก. A − B = B − A ข. B − C = A ค. B ∩ C = A − B ง. C ′ = A 16. กำหนดให้ A = {1, 2, 3, 4, 5} และ B = {2, 4} สับเซต C ของ A ซึ่ง B ∩ C = ∅ มีจำนวนเท่าใด ก. 4 ข. 6 ค. 8 ง. 12 17. จงพิจารณาว่าข้อความใดต่อไปนี้ถูกต้อง 1. มีเซต A, B, C และ D ซึ่ง D − C = B − A 2. มีเซต A, B, C และ D ซึ่ง D − C ≠ B − A ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด 18. ข้อใดต่อไปนี้ถูกต้อง 1. ถ้า A − B = ∅ แล้ว A ′ = B ′ 2. ถ้า A ∩ B ′ = ∅ แล้ว A ∩ B = A ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด 19. คนกลุ่มหนึ่งเป็นโรคสองชนิดคือโรคตาและโรคฟัน จากการสำรวจพบว่าเป็นโรคตา 40% เป็นโรคฟัน 20% เป็นทั้งสองโรค 5% อยากทราบว่ามีคนที่ไม่ เป็นโรคกี่เปอร์เซ็นต์ ก. 15% ข. 45% ค. 50% ง. 55% 20. นักเรียนห้องหนึ่งมีเด็กชาย 40 คน ปรากฏว่า 8 คน ไม่เล่นกีฬาชนิดใดเลย แต่มี 25 คน เล่น ฟุตบอล และ 20 คน เล่นวอลเลย์บอล ให้หาว่า เด็กที่เล่นฟุตบอลอย่างเดียวมีกี่คน ก. 7 คน ข. 8 คน ค. 12 คน ง. 17 คน


หน่วยการเรียนรู้ที่ 1 เซต 7 หน่วยการเรียนรู้ที่1 คำชี้แจง : ให้นักเรียนเลือกคำตอบที่ถูกต้องที่สุดเพียงข้อเดียว 1. เซตของจำนวนเต็มที่หารด้วย 10 แต่มีค่าไม่เกิน 60 คือข้อใด ก. {… , −20, −10, 0, 10, 20, … } ข. {… , −10, 0, 10, 20, 30, 40, 50, 60 } ค. {… , −10, 0, 10, 20, 30, 40, 50} ง. { 0, 10, 20, 30, 40, 50, 60 } 2. เซตของจำนวนเต็มบวกที่สอดคล้องกับสมการ (x − 4)(x + 4)(2x − 3)(3x + 2) = 0 ก. {−4, 4} ข. {4} ค. {−4, 4, − 2 3 , 3 2 } ง. { − 2 3 , 3 2 } 3. กำหนดให้ A = {0, 1,{1, 10}} พิจารณาว่า ข้อความใดต่อไปนี้ไม่ถูกต้อง ก. {1, 10} ∈ A ข. 1 ∈ A ค. {0, 1} ∈ A ง. 10 ∉ A 4. กำหนดให้ A = {1, 3, 5, … } พิจารณาว่า ข้อความใดต่อไปนี้ถูกต้อง ก. A เป็นเซตของจำนวนนับ ข. A เป็นเซตของจำนวนคี่ ค. A เป็นเซตของจำนวนคี่บวก ง. A เป็นเซตของจำนวนเต็ม 5. ให้ A = {1, 2, 3} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. A มีสับเซตทั้งหมด 8 เซต ข. {2, 3} ⊂ A ค. A ⊂ {3, 4, 5} ง. {1, 2, 3} ⊂ A 6. ให้ A = {5,{5} } ข้อใดต่อไปนี้ถูกต้อง 1. {5} ∈ A และ {5} ⊂ A 2. สับเซตทั้งหมดของ A คือ ∅,{5},{{5}} และ A ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด 7. ให้ A = {1, 3,{1, 3}} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. {1, 3} ∈ P(A) ข. {{1, 3}} เป็นสับเซตแท้ของ A ค. {∅,{1, 3}} ⊂ P(A) ง. P(A) มีจำนวนสมาชิก 16 ตัว 8. กำหนดให้เอกภพสัมพัทธ์ คือเซตของจำนวนจริง ข้อใดต่อไปนี้ไม่ใช่เซตว่าง ก. {x |x เป็นจำนวนเต็ม ซึ่ง x 2 − 10 = 0} ข. {x |x เป็นจำนวนเต็ม ซึ่ง 0 ≤ x < 1} ค. {x |x เป็นจำนวนนับ ซึ่ง x 2 + 2x = 0} ง. {x | x 2 + 1 = 0} 9. ข้อใดเป็นเซตว่าง ก. {∅} ข. {x ∈ N | x 2 + 2x + 1 = 0} ค. {x ∈ I | x 2 − 2x + 1 = 0} ง. {x ∈ I −| x 2 + 2x = 0} 10. ข้อใดต่อไปนี้ไม่เป็นเซตอนันต์ ก. I − ข. I 0 ค. I + ง. I แบบทดสอบหลังเรียน


หน่วยการเรียนรู้ที่ 1 เซต 8 11. ข้อใดต่อไปนี้ถูกต้อง 1. {1, 2, 3} = {1, 2, 2, 3, 3, 3} 2. {1, 2, 3} = {123} ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด 12. ให้ A = {x ∈ N | x(x − 1)(x − 2) = 0} และ B = {0, 1, 2} ข้อใดต่อไปนี้ถูกต้อง 1. A = B 2. A มีจำนวนสมาชิกเท่ากับ B ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด 13. กำหนดให้ A = N , B = {2, 4, 6, 8} และ C = {1, 3, 5, 7, 9} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. A ∩ B = B ข. A − B = C ค. B − C = A − C ง. A − (B ∪ C) ≠ ∅ 14. กำหนดให้ U = {1, 2, 3, … ,10} , A = {2, 4, 6} , B = {1, 3, 5, 7} และ C = {4, 5, 6} ข้อใดต่อไปนี้ไม่ถูกต้อง ก. A ∩ B ′ = A ข. A ′ − B = {20} ค. A − (B ∪ C) = A ง. (A ∪ B) ′ ≠ ∅ 15. กำหนดให้ U = N , A = {1, 2, 3, 4, 5} , B = {2, 4, 6} และ C = { 3, 5, 7} ข้อใดต่อไปนี้ถูกต้อง ก. A − B = B − A ข. B − C = A ค. B − C = B ∩ C ′ ง. C ′ = B 16. กำหนดให้ A = {1, 2, 3, 4, 5} และ B = {3, 5} สับเซต C ของ A ซึ่ง B ∩ C = ∅ มีจำนวนเท่าใด ก. 4 ข. 6 ค. 8 ง. 12 17. ให้ A = {1, 2, 3, 4, 5} และ B ⊂ A ถ้า A − B และ C = {1, 2, 4, 6} แล้ว B ∩ C เท่ากับข้อใด ก. {2} ข. {1, 2} ค. {4, 6} ง. {1, 2, 4, 6} 18. ข้อใดต่อไปนี้ถูกต้อง 1. ถ้า A ∩ B = ∅ แล้ว A ′ ∩ B = B 2. ถ้า A ′ ∩ B = ∅ แล้ว A ∪ B = A ก. ข้อ 1. และ 2. ถูก ข. ข้อ 1. ถูก และ 2. ผิด ค. ข้อ 1. ผิด และ 2. ถูก ง. ข้อ 1. และ 2. ผิด 19. จากการสอบคนกลุ่มหนึ่ง พบว่าชอบดื่มชา 45% ชอบดื่มกาแฟ 60% ชอบดื่มทั้งชาและกาแฟ 15% อยากทราบว่าคนที่ไม่ดื่มทั้งสองอย่างมีกี่เปอร์เซ็นต์ ก. 10% ข. 15% ค. 20% ง. 25% 20. ห้องเรียนห้องหนึ่งมี 50 คน ปรากฏว่า 10 คน ไม่เล่นกีฬาชนิดใดเลย มี 25 คน เล่นเทนนิส และ 30 คน เล่นแบดมินตัน ให้หาว่าเด็กที่เล่น แบดมินตันอย่างเดียวมีกี่คน ก. 7 คน ข. 8 คน ค. 12 คน ง. 15 คน เฉลย 1. ข 2. ข 3. ค 4. ค 5. ค 6. ก 7. ง 8. ข 9. ข 10. ข 11. ข 12. ง 13. ง 14. ง 15. ค 16. ค 17. ข 18. ก 19. ก 20. ง


หน่วยการเรียนรู้ที่ 1 เซต 9 การประเมินชิ้นงาน/ภาระงาน (รวบยอด) แผนฯ ที่ 6 แบบประเมินผังมโนทัศน์ คำชี้แจง : ให้ผู้สอนประเมินชิ้นงาน/ภาระงานของนักเรียนตามรายการที่กำหนด แล้วขีด ✓ ลงในช่องที่ตรงกับ ระดับคะแนน ลำดับที่ รายการประเมิน ระดับคะแนน 4 3 2 1 1 ความสอดคล้องกับจุดประสงค์ 2 ความถูกต้องของเนื้อหา 3 ความคิดสร้างสรรค์ 4 ความตรงต่อเวลา รวม ลงชื่อ ................................................... ผู้ประเมิน ................./................../.................. เกณฑ์การประเมินผังมโนทัศน์ ประเด็นที่ประเมิน ระดับคะแนน 4 3 2 1 1. ความสอดคล้อง กับจุดประสงค์ ผลงานสอดคล้องกับ จุดประสงค์ทุกประเด็น ผลงานสอดคล้องกับ จุดประสงค์เป็นส่วนใหญ่ ผลงานสอดคล้องกับ จุดประสงค์บางประเด็น ผลงานไม่สอดคล้องกับ จุดประสงค์ 2. ความถูกต้อง ของเนื้อหา เนื้อหาสาระของผลงาน ถูกต้องครบถ้วน เนื้อหาสาระของผลงาน ถูกต้องเป็นส่วนใหญ่ เนื้อหาสาระของผลงาน ถูกต้องบางประเด็น เนื้อหาสาระของผลงาน ไม่ถูกต้องเป็นส่วนใหญ่ 3. ความคิด สร้างสรรค์ ผลงานแสดงถึงความคิด สร้างสรรค์ แปลกใหม่ และเป็นระบบ ผลงานแสดงถึงความคิด สร้างสรรค์ แปลกใหม่ แต่ยังไม่เป็นระบบ ผลงานมีความน่าสนใจ แต่ยังไม่มีแนวคิดแปลก ใหม่ ผลงานไม่มีความ น่าสนใจ และไม่แสดงถึง แนวคิดแปลกใหม่ 4. ความตรงต่อ เวลา ส่งชิ้นงานภายในเวลาที่ กำหนด ส่งชิ้นงานช้ากว่าเวลาที่ กำหนด 1 วัน ส่งชิ้นงานช้ากว่าเวลาที่ กำหนด 2 วัน ส่งชิ้นงานช้ากว่าเวลาที่ กำหนด 3 วันขึ้นไป เกณฑ์การตัดสินคุณภาพ ช่วงคะแนน ระดับคุณภาพ 14 - 16 ดีมาก 11 - 13 ดี 8 - 10 พอใช้ ต่ำกว่า 8 ปรับปรุง


หน่วยการเรียนรู้ที่ 1 เซต 10 แบบประเมินการนำเสนอผลงาน คำชี้แจง : ให้ผู้สอนสังเกตพฤติกรรมของนักเรียนในระหว่างเรียนและนอกเวลาเรียน แล้วขีด ✓ลงในช่องที่ตรงกับ ระดับคะแนน ลำดับ ที่ รายการประเมิน ระดับคะแนน 4 3 2 1 1 เนื้อหาละเอียดชัดเจน 2 ความถูกต้องของเนื้อหา 3 ภาษาที่ใช้เข้าใจง่าย 4 ประโยชน์ที่ได้จากการนำเสนอ 5 วิธีการนำเสนอผลงาน รวม ลงชื่อ...................................................ผู้ประเมิน ............/................./................ เกณฑ์การให้คะแนน ผลงานหรือพฤติกรรมสมบูรณ์ชัดเจน ให้ 4 คะแนน ผลงานหรือพฤติกรรมมีข้อบกพร่องบางส่วน ให้ 3 คะแนน ผลงานหรือพฤติกรรมมีข้อบกพร่องเป็นส่วนใหญ่ ให้ 2 คะแนน ผลงานหรือพฤติกรรมมีข้อบกพร่องมาก ให้ 1 คะแนน เกณฑ์การตัดสินคุณภาพ ช่วงคะแนน ระดับคุณภาพ 18 - 20 ดีมาก 14 - 17 ดี 10 - 13 พอใช้ ต่ำกว่า 10 ปรับปรุง


หน่วยการเรียนรู้ที่ 1 เซต 11 แบบสังเกตพฤติกรรมการทำงานรายบุคคล คำชี้แจง : ให้ผู้สอนสังเกตพฤติกรรมของนักเรียนในระหว่างเรียนและนอกเวลาเรียน แล้วขีด ✓ลงในช่องที่ตรงกับ ระดับคะแนน ลำดับที่ รายการประเมิน ระดับคะแนน 4 3 2 1 1 การแสดงความคิดเห็น 2 การยอมรับฟังความคิดเห็นของผู้อื่น 3 การทำงานตามหน้าที่ที่ได้รับมอบหมาย 4 ความมีน้ำใจ 5 การตรงต่อเวลา รวม ลงชื่อ...................................................ผู้ประเมิน ............/................./................ เกณฑ์การให้คะแนน ปฏิบัติหรือแสดงพฤติกรรมอย่างสม่ำเสมอ ให้ 4 คะแนน ปฏิบัติหรือแสดงพฤติกรรมบ่อยครั้ง ให้ 3 คะแนน ปฏิบัติหรือแสดงพฤติกรรมบางครั้ง ให้ 2 คะแนน ปฏิบัติหรือแสดงพฤติกรรมน้อยครั้ง ให้ 1 คะแนน เกณฑ์การตัดสินคุณภาพ ช่วงคะแนน ระดับคุณภาพ 18 - 20 ดีมาก 14 - 17 ดี 10 - 13 พอใช้ ต่ำกว่า 10 ปรับปรุง


หน่วยการเรียนรู้ที่ 1 เซต 12 แบบสังเกตพฤติกรรมการทำงานกลุ่ม คำชี้แจง : ให้ผู้สอนสังเกตพฤติกรรมของนักเรียนในระหว่างเรียนและนอกเวลาเรียน แล้วขีด ✓ลงในช่องที่ตรงกับ ระดับคะแนน ลำดับ ที่ ชื่อ – สกุล ของนักเรียน การแสดง ความคิดเห็น การยอมรับฟัง คนอื่น การทำงาน ตามที่ได้รับ มอบหมาย ความมีน้ำใจ การมี ส่วนร่วมใน การปรับปรุง ผลงานกลุ่ม รวม 20 คะแนน 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 ลงชื่อ...................................................ผู้ประเมิน ............/................./................ เกณฑ์การให้คะแนน ปฏิบัติหรือแสดงพฤติกรรมอย่างสม่ำเสมอ ให้ 4 คะแนน ปฏิบัติหรือแสดงพฤติกรรมบ่อยครั้ง ให้ 3 คะแนน ปฏิบัติหรือแสดงพฤติกรรมบางครั้ง ให้ 2 คะแนน ปฏิบัติหรือแสดงพฤติกรรมน้อยครั้ง ให้ 1 คะแนน เกณฑ์การตัดสินคุณภาพ ช่วงคะแนน ระดับคุณภาพ 18 - 20 ดีมาก 14 - 17 ดี 10 - 13 พอใช้ ต่ำกว่า 10 ปรับปรุง


หน่วยการเรียนรู้ที่ 1 เซต 13 เกณฑ์การตัดสินคุณภาพ ช่วงคะแนน ระดับคุณภาพ 68 - 80 ดีมาก 54 - 67 ดี 40 - 53 พอใช้ ต่ำกว่า 40 ปรับปรุง แบบประเมินคุณลักษณะอันพึงประสงค์ คำชี้แจง : ให้ผู้สอนสังเกตพฤติกรรมของนักเรียนในระหว่างเรียนและนอกเวลาเรียน แล้วขีด ✓ลงในช่องที่ตรงกับ ระดับคะแนน คุณลักษณะ อันพึงประสงค์ด้าน รายการประเมิน ระดับคะแนน 4 3 2 1 1. รักชาติ ศาสน์ กษัตริย์ 1.1 ยืนตรงเคารพธงชาติ และร้องเพลงชาติได้ 1.2 เข้าร่วมกิจกรรมที่สร้างความสามัคคี ปรองดอง และเป็นประโยชน์ต่อ โรงเรียน 1.3 เข้าร่วมกิจกรรมทางศาสนาที่ตนนับถือ ปฏิบัติตามหลักศาสนา 1.4 เข้าร่วมกิจกรรมที่เกี่ยวกับสถาบันพระมหากษัตริย์ตามที่โรงเรียนจัดขึ้น 2. ซื่อสัตย์ สุจริต 2.1 ให้ข้อมูลที่ถูกต้อง และเป็นจริง 2.2 ปฏิบัติในสิ่งที่ถูกต้อง 3. มีวินัย รับผิดชอบ 3.1 ปฏิบัติตามข้อตกลง กฎเกณฑ์ ระเบียบ ข้อบังคับของครอบครัว มีความตรง ต่อเวลาในการปฏิบัติกิจกรรมต่าง ๆ ในชีวิตประจำวัน 4. ใฝ่เรียนรู้ 4.1 รู้จักใช้เวลาว่างให้เป็นประโยชน์ และนำไปปฏิบัติได้ 4.2 รู้จักจัดสรรเวลาให้เหมาะสม 4.3 เชื่อฟังคำสั่งสอนของบิดา - มารดา โดยไม่โต้แย้ง 4.4 ตั้งใจเรียน 5. อยู่อย่างพอเพียง 5.1 ใช้ทรัพย์สินและสิ่งของของโรงเรียนอย่างประหยัด 5.2 ใช้อุปกรณ์การเรียนอย่างประหยัดและรู้คุณค่า 5.3 ใช้จ่ายอย่างประหยัดและมีการเก็บออมเงิน 6. มุ่งมั่นในการ ทำงาน 6.1 มีความตั้งใจและพยายามในการทำงานที่ได้รับมอบหมาย 6.2 มีความอดทนและไม่ท้อแท้ต่ออุปสรรคเพื่อให้งานสำเร็จ 7. รักความเป็นไทย 7.1 มีจิตสำนึกในการอนุรักษ์วัฒนธรรมและภูมิปัญญาไทย 7.2 เห็นคุณค่าและปฏิบัติตนตามวัฒนธรรมไทย 8. มีจิตสาธารณะ 8.1 รู้จักช่วยพ่อแม่ ผู้ปกครอง และครูทำงาน 8.2 รู้จักการดูแลรักษาทรัพย์สมบัติและสิ่งแวดล้อมของห้องเรียนและโรงเรียน ลงชื่อ...................................................ผู้ประเมิน ............/................./................ เกณฑ์การให้คะแนน พฤติกรรมที่ปฏิบัติสม่ำเสมอ ให้ 4 คะแนน พฤติกรรมที่ปฏิบัติบ่อยครั้ง ให้ 3 คะแนน พฤติกรรมที่ปฏิบัติบางครั้ง ให้ 2 คะแนน พฤติกรรมที่ปฏิบัติน้อยครั้ง ให้ 1 คะแนน


14 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต แผนการจัดการเรียนรู้ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต เวลา 2 ชั่วโมง 1. ผลการเรียนรู้ 1. เข้าใจและใช้ความรู้เกี่ยวกับเซต ในการสื่อสารและสื่อความหมายทางคณิตศาสตร์ 2. จุดประสงค์การเรียนรู้ 1) สามารถบอกได้ว่าเซตใดเป็นเซตว่าง เซตจำกัด เซตอนันต์ และเซตที่เท่ากันได้ (K) 2) เขียนเซตโดยวิธีแจกแจงสมาชิกและวิธีบอกเงื่อนไขได้(P) 3) มีความสามารถในการสื่อสาร สื่อความหมายทางคณิตศาสตร์การเขียนเซต และการน าเสนออภิปรายสรุป ความหมายของเซตได้ (P) 4) รับผิดชอบต่อหน้าที่ที่ได้รับมอบหมาย (A) 3. สาระการเรียนรู้ สาระการเรียนรู้เพิ่มเติม สาระการเรียนรู้ท้องถิ่น ความรู้เบื้องต้นและสัญลักษณ์พื้นฐานเกี่ยวกับเซต พิจารณาตามหลักสูตรของสถานศึกษา 4. สาระสำคัญ/ความคิดรวบยอด การเขียนเซตมีสองแบบ คือ เขียนแบบแจกแจงสมาชิก และเขียนแบบบอกเงื่อนไขของสมาชิก การใช้ สัญลักษณ์แทนเซตและสมาชิกของเซต ชนิดของเซตประกอบด้วย เซตว่าง เซตจำกัด และเซตอนันต์ การเท่ากัน ของเซต 5. สมรรถนะสำคัญของผู้เรียนและคุณลักษณะอันพึงประสงค์ สมรรถนะสำคัญของผู้เรียน คุณลักษณะอันพึงประสงค์ 1. ความสามารถในการสื่อสาร 2. ความสามารถในการคิด 1) ทักษะการระบุ 2) ทักษะการคิดคล่อง 3. ความสามารถในการแก้ปัญหา 1. มีวินัย 2. ใฝ่เรียนรู้ 3. มุ่งมั่นในการทำงาน 6. กิจกรรมการเรียนรู้ แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : Concept based Teaching


15 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต นักเรียนทำแบบทดสอบก่อนเรียน หน่วยการเรียนรู้ที่ 1 ขั้นการใช้ความรู้เดิมเชื่อมโยงความรู้ใหม่ (Prior Knowledge) 1. ครูแจ้งผลการเรียนรู้ให้นักเรียนทราบ 2. ครูกระตุ้นความสนใจของนักเรียนโดยให้นักเรียนดูภาพหน้าหน่วย จากนั้นครูยกสถานการณ์ของภาพหน้า หน่วย จากหนังสือเรียนหน้า 2 แล้วให้นักเรียนร่วมกันแสดงความคิดเห็น หมายเหตุ* ครูและนักเรียนร่วมกันเฉลยคำถาม BIG QUESTION หลังเรียนหน่วยการเรียนรู้ที่ 1 3. ครูและนักเรียนร่วมกันสนทนาจากหน้าควรรู้ก่อนเรียน เกี่ยวกับการแบ่งสัตว์เป็น 2 กลุ่ม ว่าใช้หลักใน การแบ่งกลุ่มอย่างไร เพื่อเชื่อมโยงไปสู่การแบ่งกลุ่มของจำนวนทางคณิตศาสตร์ 4. ครูให้นักเรียนพิจารณาประโยคต่อไปนี้ หนังสือกองหนึ่ง ลิงฝูงหนึ่ง ช้างโขลงหนึ่ง ไพ่สำรับหนึ่ง คณะกรรมการนักเรียนชั้นมัธยมศึกษาปีที่ 4 จากนั้นครูอธิบายว่า ประโยคข้างต้นกล่าวถึงลักษณะของกลุ่ม ซึ่งเราทราบแน่นอนว่ามีสิ่งใดอยู่ในกลุ่มและ สิ่งใดไม่อยู่ในกลุ่ม ซึ่งในทางคณิตศาสตร์จะเรียกว่า เซต ขั้นรู้ (Knowing) 1. ครูบอกความหมายของเซต สัญลักษณ์การเขียนแทนเซต และวิธีการเขียนเซตแบบแจกแจงสมาชิกและ แบบบอกเงื่อนไขของสมาชิก 2. ครูยกตัวอย่างเซตบนกระดาน แล้วตั้งคำถามดังนี้ • เซตของชื่อวันในหนึ่งสัปดาห์มีสมาชิกอะไรบ้าง (แนวตอบ อาทิตย์ จันทร์ อังคาร พุธ พฤหัสบดี ศุกร์ เสาร์) • เซตของชื่อวันในหนึ่งสัปดาห์เขียนแบบแจกแจงสมาชิกได้อย่างไร (แนวตอบ A = { อาทิตย์, จันทร์, อังคาร, พุธ, พฤหัสบดี, ศุกร์, เสาร์}) • เซตของชื่อวันในหนึ่งสัปดาห์เขียนแบบบอกเงื่อนไขได้อย่างไร (แนวตอบ A = { x | x เป็นชื่อวันในหนึ่งสัปดาห์}) • เซตของจำนวนเต็มเขียนแบบแจกแจงสมาชิกได้อย่างไร และมีจำนวนสมาชิกของเซตเท่าใด (แนวตอบ A = { … , -3, -2, -1, 0, 1, 2, 3, … } จะได้ว่า มีสมาชิกมากมายนับไม่ถ้วน) ขั้นสอน ขั้นนำ ชั่วโมงที่ 1


16 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต • เซตของจำนวนเต็มที่อยู่ระหว่าง -5 ถึง 5 เขียนแบบแจกแจงสมาชิกได้อย่างไร และมีจำนวนสมาชิก ของเซตเท่าใด (แนวตอบ A = { -4, -3, -2, -1, 0, 1, 2, 3, 4 } จะได้ว่า มีสมาชิก 9 ตัว) • เซตของจำนวนเต็มบวกที่อยู่ระหว่าง -1 ถึง 1 เขียนแบบแจกแจงสมาชิกได้อย่างไร และมีจำนวน สมาชิกของเซตเท่าใด (แนวตอบ ไม่มีจำนวนเต็มบวกที่อยู่ระหว่าง -1 ถึง 1 จะได้ว่า มีสมาชิก 0 ตัว) 3. ครูอธิบายเพิ่มเติมว่าเซตที่สามารถบอกจำนวนสมาชิกได้ เรียกว่า เซตจำกัด และเซตที่ไม่สามารถบอก จำนวนสมาชิกได้ เรียกว่า เซตอนันต์และเวตที่มีสมาชิก 0 ตัว หรือไม่มีสมาชิกอยู่เลย เรียกว่าเซตว่าง 4. ครูเขียนบทนิยามเซตจำกัด เซตอนันต์ และเซตว่าง พร้อมทั้งบอกสัญลักษณ์จำนวนสมาชิกของเซต จำกัดใด ๆ และสัญลักษณ์ของเซตว่าง และเน้นย้ำว่าเซตว่างเป็นเซตจำกัด เพราะเป็นเซตที่มีสมาชิก 0 ตัว ขั้นเข้าใจ (Understanding) 5. ครูให้นักเรียนวิเคราะห์และตอบคำถามของ “Thinking Time” จากนั้นครูสุ่มนักเรียน 3 – 4 คน เฉลย คำตอบพร้อมทั้งให้เหตุผล โดยครูตรวจสอบความถูกต้อง 6. ครูอธิบาย “คณิตน่ารู้” จากนั้นให้นักเรียนยกตัวอย่างตัวอักษรกรีกที่นักเรียนรู้จัก แล้วร่วมกันอภิปรายใน ห้องเรียน 7. ครูให้นักเรียนทำแบบฝึกทักษะ 1.1 ข้อ 1. – 4. เป็นการบ้าน ขั้นรู้ (Knowing) 1. ครูและนักเรียนร่วมกันเฉลยการบ้าน 2. ครูเขียนเซตของจำนวนต่าง ๆ และบอกสัญลักษณ์แทนการเขียนเซต จากนั้นให้นักเรียนอ่าน “คณิตน่ารู้” จากหนังสือเรียนหน้า 6 และอธิบายเพิ่มเติมเกี่ยวกับการใช้สัญลักษณ์ของจำนวนเต็ม 3. ครูให้นักเรียนพิจารณาเซตต่อไปนี้ A = {1, 2, 3, 4, 5} B = {x | x เป็นจำนวนเต็ม และ 1 ≤ x < 6} C = {x | x เป็นจำนวนเต็ม และ 1 < x ≤ 6} • จำนวนสมาชิกของเซต A เซต B และเซต C มีจำนวนเท่ากันหรือไม่ (แนวตอบ เท่ากัน นั่นคือ n(A) = n(B) = n(C)) ชั่วโมงที่ 2


17 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต ขั้นสรุป • เซต A เซต B และเซต C มีสมาชิกเหมือนกันทุกตัวหรือไม่ (แนวตอบ เซต A และเซต B มีสมาชิกเหมือนกันทุกตัว เซต B และเซต C มีสมาชิกไม่เหมือนกันทุกตัว และ เซต A และเซต C มีสมาชิกไม่เหมือนกันทุกตัว) จากคำถามข้างต้น ครูอธิบายเพิ่มเติมว่า เซต A และเซต B มีสมาชิกเหมือนกันทุกตัว และมีจำนวน สมาชิกเท่ากัน จะถือว่าเป็นเซตเดียวกัน กล่าวได้ว่า เซต A เท่ากับเซต B เขียนแทนด้วย A = B และ เซต B และเซต C มีจำนวนสมาชิกเท่ากันแต่มีจำนวนสมาชิกไม่เหมือนกัน จะถือว่าไม่เป็นเซตเดียวกัน กล่าวได้ว่า เซต B ไม่เท่ากับเซต C เขียนแทนด้วย B ≠ C 4. จากนั้นครูเขียนบทนิยามเซตที่เท่ากันบนกระดาน และขยายความของบทนิยามให้นักเรียนเข้าใจมาก ยิ่งขึ้น ขั้นเข้าใจ (Understanding) 1. ครูให้นักเรียนศึกษาตัวอย่างที่ 1 และตัวอย่างที่ 2 จากหนังสือแบบเรียนหน้า 7 แล้วให้ทำ “ลองทำดู” เพื่อตรวจสอบความเข้าใจเรื่องเซตที่เท่ากัน จากนั้นให้ทำแบบฝึกทักษะ 1.1 ข้อ 5. – 6. แล้วสุ่มนักเรียน เฉลยคำตอบ โดยครูตรวจสอบความถูกต้อง 2. ครูให้นักเรียนทำ Exercise 1.1 ในหนังสือแบบฝึกหัดเป็นการบ้าน ขั้นลงมือทำ (Doing) ครูให้นักเรียนจับคู่ทำใบงานที่ 1.1 เรื่อง ความรู้เบื้องต้นเกี่ยวกับเซต แล้วแลกเปลี่ยนความรู้กับคู่ของตนเอง จากนั้นครูสุ่มนักเรียนทีละคู่ให้เฉลยคำตอบบนกระดาน โดยครูตรวจสอบความถูกต้อง 1. ครูถามตอบนักเรียนเพื่อทบทวนความรู้ ความรู้เบื้องต้นเกี่ยวกับเซต 2. ครูให้นักเรียนสรุปความรู้รวบยอดเรื่อง ความรู้เบื้องต้นเกี่ยวกับเซต ลงในสมุด


18 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต 7. การวัดและประเมินผล รายการวัด วิธีการ เครื่องมือ เกณฑ์การประเมิน 7.1 การประเมินก่อนเรียน - แบบทดสอบก่อนเรียน หน่วยการเรียนรู้ที่ 1 เรื่อง เซต - ตรวจแบบทดสอบ ก่อนเรียน - แบบทดสอบ ก่อนเรียน - ประเมินตามสภาพจริง 7.2 ประเมินระหว่างการจัด กิจกรรมการเรียนรู้ 1) ความรู้เบื้องต้น เกี่ยวกับเซต - ตรวจใบงานที่ 1.1 - ตรวจแบบฝึกทักษะ 1.1 - ตรวจ Exercise 1.1 - ใบงานที่ 1.1 - แบบฝึกทักษะ 1.1 - Exercise 1.1 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 2) นำเสนอผลงาน - ประเมินการนำเสนอ ผลงาน - แบบประเมินการ นำเสนอผลงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 3) พฤติกรรมการทำงาน รายบุคคล - สังเกตพฤติกรรม การทำงานรายบุคคล - แบบสังเกตพฤติกรรม การทำงานรายบุคคล - ระดับคุณภาพ 2 ผ่านเกณฑ์ 4) พฤติกรรมการทำงาน กลุ่ม - สังเกตพฤติกรรม การทำงานกลุ่ม - แบบสังเกตพฤติกรรม การทำงานกลุ่ม - ระดับคุณภาพ 2 ผ่านเกณฑ์ 5) คุณลักษณะ อันพึงประสงค์ - สังเกตความมีวินัย ใฝ่เรียนรู้ และมุ่งมั่น ในการทำงาน - แบบประเมิน คุณลักษณะ อันพึงประสงค์ - ระดับคุณภาพ 2 ผ่านเกณฑ์ 8. สื่อ/แหล่งการเรียนรู้ 8.1 สื่อการเรียนรู้ 1) หนังสือเรียนรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 2) หนังสือแบบฝึกหัดรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 3) ใบงานที่ 1.1 เรื่อง ความรู้เบื้องต้นเกี่ยวกับเซต 8.2 แหล่งการเรียนรู้ 1) ห้องสมุด 2) แหล่งชุมชน 3) อินเทอร์เน็ต


19 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต เรื่อง ความรู้เบื้องต้นเกี่ยวกับเซต คำชี้แจง : ให้นักเรียนตอบค ำถำมในแต่ละข้อต่อไปนี้ 1. ให้เขียนเซตต่อไปนี้แบบแจกแจงสมำชิก 1) เซตของจ ำนวนคู่บวกที่น้อยกว่ำ 25 ……………………………………………………………………………………………..................................................................... 2) เซตของจ ำนวนเต็มลบที่มำกกว่ำ – 100 ……………………………………………………………………………………………..................................................................... 3) { x | x เป็นจำนวนเต็มที่มากกว่า 3 และน้อยกว่า 15 } ……………………………………………………………………………………………..................................................................... 4) { x | x เป็นจำนวนเต็มที่อยู่ระหว่าง 5 กับ 6 } ……………………………………………………………………………………………..................................................................... 5) { x | x = 2n + 5 โดยที่ n เป็นจำนวนนับ } ……………………………………………………………………………………………..................................................................... 2. ให้เขียนเซตต่อไปนี้แบบบอกเงื่อนไขของสมาชิก 1) A = { 1, 4, 9, 16, 25, 36, … } ……………………………………………………………………………………………..................................................................... 2) B = { … , −10, −5 , 0, 5, 10, … } ……………………………………………………………………………………………..................................................................... 3) C = { 3, 5, 7, 9, 11, … ,101} ……………………………………………………………………………………………..................................................................... 4) D = { 5, 10, 15, 20, … } ……………………………………………………………………………………………..................................................................... 5) E = { 1 2 , 2 3 , 3 4 , … , 100 101 } ……………………………………………………………………………………………..................................................................... 3. เซตต่อไปนี้เซตใดเป็นเซตจำกัด เซตใดเป็นเซตอนันต์เพราะเหตุใด 1) A = { 1, 8, 27, 64, … } ……………………………………………………………………………………………..................................................................... 2) B = { 1, 8, 27, 64, … ,1000 } ……………………………………………………………………………………………..................................................................... ใบงานที่ 1.1


20 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต 3) C = { x | x เป็นจำนวนเต็มบวก และ x 2 + 7x + 6 = 0 } ……………………………………………………………………………………………..................................................................... 4) D = { x | x เป็นจำนวนจริง และ x 2 − 4 = (x − 2)(x + 2) } ……………………………………………………………………………………………..................................................................... 5) E = { x | x เป็นจำนวนเต็มที่หารด้วย 10 ลงตัว} ……………………………………………………………………………………………..................................................................... 4. เซตในแต่ละข้อต่อไปนี้มีเซตใดบ้างที่เท่ากัน 1) A = { 1, 2, 3 ,4 } B = { 4, 4, 4, 4, 3, 3, 3, 2, 2, 1} ……………………………………………………………………………………………..................................................................... 2) C = { 1, 8, 27, 64 } D = { 1 3 , 2 3 , 3 3 , 4 3 } ……………………………………………………………………………………………..................................................................... 3) E = { 1, 2, 3 } F = { 1, 2,{3}} ……………………………………………………………………………………………..................................................................... 4) G = { x | x เป็นจำนวนเต็มที่หารด้วย 3 ลงตัว} H = { 3, 6, 9, 12, … } ……………………………………………………………………………………………..................................................................... 5) J = { x | x เป็นจำนวนเต็มลบ และ x 2 − x − 20 = 0 } K = { −5 } ……………………………………………………………………………………………..................................................................... 6) M = { x | x เป็นจำนวนคี่ที่น้อยกว่า 9 } N = { 1, 3 ,5, 7 } ……………………………………………………………………………………………..................................................................... 7) P = { x | x เป็นจำนวนตรรกยะ และ 3x 2 − 5x − 2 = 0 } Q = {− 1 3 , 2 } ……………………………………………………………………………………………..................................................................... 8) S = { x | x เป็นจำนวนเต็ม และ x 2 = −1 } T = {∅} …………………………………………………………………………………………….....................................................................


21 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต { 2, 4, 6, 8, … , 24 } { - 2, - 4, - 6, … , - 98 } { 4, 5, 6, … , 14 } ∅ { 7, 9, 11, 13, … } { x | x = n 2 เมื่อ n เป็นจ านวนนับ } { x | x = −5n เมื่อ n เป็นจ านวนเต็ม } { x | x = 2n + 1 เมื่อ n เป็นจ านวนนับที่ไม่เกิน 50 } { x | x = 5n เมื่อ n เป็นจ านวนนับ } เซตจ ากัด เพราะมีสมาชิก 10 ตัว { x | x = n n+1 เมื่อ n เป็นจ านวนนับที่ไม่เกิน 100 } เซตอนันต์ เพราะมีสมาชิกมากมายนับไม่ถ้วน เรื่อง ความรู้เบื้องต้นเกี่ยวกับเซต คำชี้แจง : ให้นักเรียนตอบค ำถำมในแต่ละข้อต่อไปนี้ 1. ให้เขียนเซตต่อไปนี้แบบแจกแจงสมำชิก 1) เซตของจ ำนวนคู่บวกที่น้อยกว่ำ 25 ……………………………………………………………………………………………..................................................................... 2) เซตของจ ำนวนเต็มลบที่มำกกว่ำ – 100 …………………………………………………………………………………………........................................................................ 3) { x | x เป็นจำนวนเต็มที่มากกว่า 3 และน้อยกว่า 15 } ……………………………………………………………………………………………..................................................................... 4) { x | x เป็นจำนวนเต็มที่อยู่ระหว่าง 5 กับ 6 } ……………………………………………………………………………………………..................................................................... 5) { x | x = 2n + 5 เมื่อ n เป็นจำนวนนับ } ……………………………………………………………………………………………..................................................................... 2. ให้เขียนเซตต่อไปนี้แบบบอกเงื่อนไขของสมาชิก 1) A = { 1, 4, 9, 16, 25, 36, … } ……………………………………………………………………………………………..................................................................... 2) B = { … , −10, −5 , 0, 5, 10, … } ……………………………………………………………………………………………..................................................................... 3) C = { 3, 5, 7, 9, 11, … ,101} ……………………………………………………………………………………………..................................................................... 4) D = { 5, 10, 15, 20, … } ……………………………………………………………………………………………..................................................................... 5) E = { 1 2 , 2 3 , 3 4 , … , 100 101 } ……………………………………………………………………………………………..................................................................... 3. เซตต่อไปนี้ เซตใดเป็นเซตจำกัด เซตใดเป็นเซตอนันต์เพราะเหตุใด 1) A = { 1, 8, 27, 64, … } ……………………………………………………………………………………………..................................................................... 2) B = { 1, 8, 27, 64, … ,1000 } ……………………………………………………………………………………………..................................................................... ใบงานที่ 1.1 เฉลย


22 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต เซตจ ากัด เพราะเป็นเซตว่าง มีสมาชิก 0 ตัว เซตอนันต์ เพราะมีสมาชิกมากมายนับไม่ถ้วน เซตอนันต์ เพราะมีสมาชิกมากมายนับไม่ถ้วน P = Q M ≠ N E ≠ F J ≠ K C = D G ≠ H A = B S ≠ T 3) C = { x | x เป็นจำนวนเต็มบวก และ x 2 + 7x + 6 = 0 } ……………………………………………………………………………………………..................................................................... 4) D = { x | x เป็นจำนวนจริง และ x 2 − 4 = (x − 2)(x + 2) } ……………………………………………………………………………………………..................................................................... 5) E = { x | x เป็นจำนวนเต็มที่หารด้วย 10 ลงตัว} ……………………………………………………………………………………………..................................................................... 4. เซตในแต่ละข้อต่อไปนี้มีเซตใดบ้างที่เท่ากัน 1) A = { 1, 2, 3 ,4 } B = { 4, 4, 4, 4, 3, 3, 3, 2, 2, 1} ……………………………………………………………………………………………..................................................................... 2) C = { 1, 8, 27, 64 } D = { 1 3 , 2 3 , 3 3 , 4 3 } ……………………………………………………………………………………………..................................................................... 3) E = { 1, 2, 3 } F = { 1, 2,{3}} ……………………………………………………………………………………………..................................................................... 4) G = { x | x เป็นจำนวนเต็มที่หารด้วย 3 ลงตัว} H = { 3, 6, 9, 12, … } ……………………………………………………………………………………………..................................................................... 5) J = { x | x เป็นจำนวนเต็มลบ และ x 2 − x − 20 = 0 } K = { −5 } ……………………………………………………………………………………………..................................................................... 6) M = { x | x เป็นจำนวนคี่ที่น้อยกว่า 9 } N = { 1, 3 ,5, 7 } ……………………………………………………………………………………………..................................................................... 7) P = { x | x เป็นจำนวนตรรกยะ และ 3x 2 − 5x − 2 = 0 } Q = {− 1 3 , 2 } ……………………………………………………………………………………………..................................................................... 8) S = { x | x เป็นจำนวนเต็ม และ x 2 = −1 } T = {∅} …………………………………………………………………………………………….....................................................................


23 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 1 ความรู้เบื้องต้นเกี่ยวกับเซต 9. ความเห็นของผู้บริหารสถานศึกษาหรือผู้ที่ได้รับมอบหมาย ข้อเสนอแนะ ลงชื่อ ........................................ ( ...................................... ) ตำแหน่ง ………………….................. 10. บันทึกผลหลังการสอน ด้านความรู้ ด้านสมรรถนะสำคัญของผู้เรียน ด้านคุณลักษณะอันพึงประสงค์ ด้านความสามารถทางคณิตศาสตร์ ด้านอื่น ๆ (พฤติกรรมเด่น หรือพฤติกรรมที่มีปัญหาของนักเรียนเป็นรายบุคคล (ถ้ามี)) ปัญหา/อุปสรรค แนวทางการแก้ไข


24 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 2 เอกภพสัมพัทธ์ แผนการจัดการเรียนรู้ที่ 2 เอกภพสัมพัทธ์ เวลา 1 ชั่วโมง 1. ผลการเรียนรู้ 1. เข้าใจและใช้ความรู้เกี่ยวกับเซต ในการสื่อสารและสื่อความหมายทางคณิตศาสตร์ 2. จุดประสงค์การเรียนรู้ 1) ระบุเซตที่เป็นเอกภพสัมพัทธ์เมื่อกำหนดเซตได้(K) 2) มีความสามารถในการสื่อสาร สื่อความหมายทางคณิตศาสตร์ การเขียนเซตเมื่อก าหนดเอกภพสัมพัทธ์ได้ และการน าเสนออภิปรายสรุปได้(P) 3) รับผิดชอบต่อหน้าที่ที่ได้รับมอบหมาย (A) 3. สาระการเรียนรู้ สาระการเรียนรู้เพิ่มเติม สาระการเรียนรู้ท้องถิ่น ความรู้เบื้องต้นและสัญลักษณ์พื้นฐานเกี่ยวกับเซต พิจารณาตามหลักสูตรของสถานศึกษา 4. สาระสำคัญ/ความคิดรวบยอด เอกภพสัมพัทธ์ เป็นการกำหนดเซตขึ้นมาเซตหนึ่งโดยจะไม่กล่าวถึงสิ่งใดนอกเหนือจากสมาชิกของเซตที่ กำหนด เขียนแทนด้วยสัญลักษณ์ U 5. สมรรถนะสำคัญของผู้เรียนและคุณลักษณะอันพึงประสงค์ สมรรถนะสำคัญของผู้เรียน คุณลักษณะอันพึงประสงค์ 1. ความสามารถในการสื่อสาร 2. ความสามารถในการคิด 1) ทักษะการระบุ 2) ทักษะการคิดคล่อง 3. ความสามารถในการแก้ปัญหา 1. มีวินัย 2. ใฝ่เรียนรู้ 3. มุ่งมั่นในการทำงาน 6. กิจกรรมการเรียนรู้ แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : แบบอุปนัย (Induction)


25 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 2 เอกภพสัมพัทธ์ 1. ครูและนักเรียนร่วมกันเฉลยการบ้าน 2. ครูให้นักเรียนพิจารณาเซตต่อไปนี้แล้วตอบคำถาม A = {x | x เป็นจำนวนนับ และ −3 ≤ x ≤ 3} B = {x | x เป็นจำนวนเต็ม และ −3 ≤ x ≤ 3} • สมาชิกของเซต A มีอะไรบ้าง (แนวตอบ 1, 2, 3) • สมาชิกของเซต B มีอะไรบ้าง (แนวตอบ -3, -2, -1, 0, 1, 2, 3) จากนั้นครูอธิบายเพิ่มเติมว่า ถ้ากำหนดเงื่อนไขของเซต A และเซต B เหมือนกัน แต่ขอบเขตของเซต ต่างกัน จะทำให้ผลลัพธ์ของเซตต่างกัน นั่นคือ สมาชิกบางตัวของเซต B จะไม่อยู่ในเซต A การกำหนด ขอบเขตของเซตเรียกว่า เอกภพสัมพัทธ์ 1. ครูเขียนบทนิยามเอกภพสัมพัทธ์บนกระดาน และสัญลักษณ์ของเอกภพสัมพัทธ์ 2. ครูให้นักเรียนศึกษาตัวอย่างที่ 3 จากหนังสือเรียนหน้า 10 แล้วให้ทำ “ลองทำดู” จากนั้นครูและนักเรียน ร่วมกันเฉลยคำตอบ 3. ครูเขียนตัวอย่างที่ 4 จากหนังสือเรียนหน้า 10 บนกระดาน แล้วอธิบายเพื่อให้นักเรียนเห็นว่า ถ้าเซต เดียวกัน แต่กำหนดเอกภพสัมพัทธ์ที่ต่างกันจะทำให้ได้สมาชิกของเซตต่างกัน จากนั้นครูกล่าวสรุปว่า ในการกำหนดเอกภพสัมพัทธ์เพื่อไม่ให้เกิดความสับสนจึงกำหนดให้เขียนเซตแบบบอกเงื่อนไขของสมาชิก เช่น { x ∈ I + | x 2 − x = 0 } หรือ{x ∈ I | x 2 − x = 0 } จากนั้นให้นักเรียนทำ “ลองทำดู” แล้วร่วมกัน เฉลยคำตอบ โดยครูตรวจสอบความถูกต้อง 4. ครูให้นักเรียนศึกษา “คณิตน่ารู้” จากหนังสือเรียนหน้า 11 แล้วสรุปให้นักเรียนเข้าใจว่า เมื่อเซตใด ๆ ที่ ไม่ได้กำหนดเอกภพสัมพัทธ์ให้ถือว่าเอกภพสัมพัทธ์เป็นจำนวนจริง พร้อมทั้งเขียนตัวอย่างเซตแบบบอก เงื่อนไขบนกระดาน 5. ครูให้นักเรียนจับคู่ทำแบบฝึกทักษะ 1.2 จากนั้นครูสุ่มทีละคู่เฉลยคำตอบ โดยครูตรวจสอบความถูกต้อง 6. ครูให้นักเรียนทำ Exercise 1.2 จากหนังสือแบบฝึกหัดเป็นการบ้าน 1. ครูถามตอบนักเรียนเพื่อทบทวนความรู้เรื่อง เอกภพสัมพัทธ์ 2. ครูให้นักเรียนเขียนสรุปความรู้รวบยอดเรื่อง เอกภพสัมพัทธ์ ลงในสมุด ขั้นสรุป ขั้นสอน ขั้นนำ


26 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 2 เอกภพสัมพัทธ์ 7. การวัดและประเมินผล รายการวัด วิธีการ เครื่องมือ เกณฑ์การประเมิน 7.1 การประเมินระหว่างการ จัดกิจกรรมการเรียนรู้ 1) เอกภพสัมพัทธ์ - ตรวจแบบฝึกทักษะ 1.2 - ตรวจ Exercise 1.2 - แบบฝึกทักษะ 1.2 - Exercise 1.2 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 2) นำเสนอผลงาน - ประเมินการนำเสนอ ผลงาน - แบบประเมินการ นำเสนอผลงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 3) พฤติกรรมการทำงาน รายบุคคล - สังเกตพฤติกรรม การทำงานรายบุคคล - แบบสังเกตพฤติกรรม การทำงานรายบุคคล - ระดับคุณภาพ 2 ผ่านเกณฑ์ 4) พฤติกรรมการทำงาน กลุ่ม - สังเกตพฤติกรรม การทำงานกลุ่ม - แบบสังเกตพฤติกรรม การทำงานกลุ่ม - ระดับคุณภาพ 2 ผ่านเกณฑ์ 5) คุณลักษณะอันพึง ประสงค์ - สังเกตความมีวินัย ใฝ่เรียนรู้ และมุ่งมั่น ในการทำงาน - แบบประเมิน คุณลักษณะ อันพึงประสงค์ - ระดับคุณภาพ 2 ผ่านเกณฑ์ 8. สื่อ/แหล่งการเรียนรู้ 8.1 สื่อการเรียนรู้ 1) หนังสือเรียนรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เรื่องเซต 2) แบบฝึกหัดรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เรื่องเซต 8.2 แหล่งการเรียนรู้ 1) ห้องสมุด 2) แหล่งชุมชน 3) อินเทอร์เน็ต


27 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 2 เอกภพสัมพัทธ์ 9. ความเห็นของผู้บริหารสถานศึกษาหรือผู้ที่ได้รับมอบหมาย ข้อเสนอแนะ ลงชื่อ ................................. ( ................................ ) ตำแหน่ง ....... 10. บันทึกผลหลังการสอน ด้านความรู้ ด้านสมรรถนะสำคัญของผู้เรียน ด้านคุณลักษณะอันพึงประสงค์ ด้านความสามารถทางคณิตศาสตร์ ด้านอื่น ๆ (พฤติกรรมเด่น หรือพฤติกรรมที่มีปัญหาของนักเรียนเป็นรายบุคคล (ถ้ามี)) ปัญหา/อุปสรรค แนวทางการแก้ไข


28 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต แผนการจัดการเรียนรู้ที่ 3 สับเซตและเพาเวอร์เซต เวลา 2 ชั่วโมง 1. ผลการเรียนรู้ 1. เข้าใจและใช้ความรู้เกี่ยวกับเซต ในการสื่อสารและสื่อความหมายทางคณิตศาสตร์ 2. จุดประสงค์การเรียนรู้ 1) หาสับเซต เพาเวอร์เซต จำนวนสมาชิกของสับเซตและเพาเวอร์เซตได้(K) 2) หาความสัมพันธ์ระหว่างสับเซตและเพาเวอร์เซตของเซตจำกัดได้(K) 3) มีความสามารถในการสื่อสาร สื่อความหมายทางคณิตศาสตร์การเขียนเซต และการน าเสนออภิปรายสรุป สับเซตและเพาเวอร์เซตได้ (P) 4) รับผิดชอบต่อหน้าที่ที่ได้รับมอบหมาย (A) 3. สาระการเรียนรู้ สาระการเรียนรู้เพิ่มเติม สาระการเรียนรู้ท้องถิ่น ความรู้เบื้องต้นและสัญลักษณ์พื้นฐานเกี่ยวกับเซต พิจารณาตามหลักสูตรของสถานศึกษา 4. สาระสำคัญ/ความคิดรวบยอด เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B เขียนแทนด้วย A B และเพาเวอร์เซตของเซต A คือ เซตของสับเซตทั้งหมดของ A เขียนแทนด้วย P(A) 5. สมรรถนะสำคัญของผู้เรียนและคุณลักษณะอันพึงประสงค์ สมรรถนะสำคัญของผู้เรียน คุณลักษณะอันพึงประสงค์ 1. ความสามารถในการสื่อสาร 2. ความสามารถในการคิด 1) ทักษะการคิดคล่อง 3. ความสามารถในการแก้ปัญหา 1. มีวินัย 2. ใฝ่เรียนรู้ 3. มุ่งมั่นในการทำงาน 6. กิจกรรมการเรียนรู้ แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : Concept based Teaching


29 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต ขั้นการใช้ความรู้เดิมเชื่อมโยงความรู้ใหม่ (Prior Knowledge) ครูทบทวนเรื่องการเท่ากันของเซต คือ เซต A เท่ากับเซต B เป็นความสัมพันธ์ที่สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสมาชิกทุกตัวของเซต B เป็นสมาชิกของเซต A ขั้นรู้ (Knowing) ครูให้นักเรียนพิจารณาเซต A และเซต B แล้วตั้งคำถาม ดังนี้ A = {1, 2} B = {1, 2, 3, 4} • สมาชิกทุกตัวในเซต A อยู่ในเซต B หรือไม่ เพราะเหตุใด (แนวตอบ สมาชิกทุกตัวในเซต A อยู่ในเซต B นั่นคือ 1 และ 2 อยู่ในเซต A และอยู่ในเซต B ด้วย) • สมาชิกทุกตัวในเซต B อยู่ในเซต A หรือไม่ เพราะเหตุใด (แนวตอบ ไม่ทุกตัว เพราะมีสมาชิกบางตัวในเซต B เท่านั้นที่อยู่ในเซต A นั่นคือ 1 และ 2 อยู่ใน เซต A แต่ 3 และ 4 ไม่อยู่ในเซต A) จากคำถามข้างต้นครูสรุปได้ว่า “สมาชิกทุกตัวในเซต A เป็นสมาชิกของเซต B กล่าวได้ว่า เซต A เป็น สับเซตของเซต B” แล้วเขียนบทนิยาม และสัญลักษณ์แทนสับเซตบนกระดาน และอธิบายเพิ่มเติมเรื่อง สับเซตแท้ ขั้นเข้าใจ (Understanding) 1. ครูให้นักเรียนศึกษาตัวอย่างที่ 5 จากหนังสือเรียนหน้า 12 แล้วให้ทำ “ลองทำดู” จากนั้นครูและนักเรียน ร่วมกันตรวจสอบความถูกต้อง 2. ครูเขียนตัวอย่างที่ 6 จากหนังสือเรียนหน้า 13 บนกระดาน และเขียนสับเซตที่เป็นได้ทั้งหมดของเซตที่มี สมาชิก 3 ตัว พร้อมทั้งอธิบายอย่างละเอียด จากนั้นครูยกตัวอย่างเซตที่มีสมาชิก 4 ตัว บนกระดาน และ ร่วมกันอภิปรายถึงสับเซตที่เป็นไปได้ทั้งหมด 3. ครูให้นักเรียนศึกษาข้อสังเกต โดยพิจารณาจากตัวอย่างในการหาสับเซตที่กล่าวมาข้างต้น 4. ครูให้พิจารณาเซต A จากหนังสือเรียนหน้า 14 จากนั้นให้ร่วมกันอภิปรายจำนวนสมาชิกของสับเซต เพื่อ นำไปสู่การสรุปว่า “ถ้าเซต A มีจำนวนสมาชิกเท่ากับ n ตัว แล้วจำนวนสับเซตทั้งหมดของเซต A เท่ากับ 2 n เซต และจำนวนสับเซตแท้ทั้งหมดของเซต A เท่ากับ 2 n − 1 เซต” ขั้นนำ ชั่วโมงที่ 1 ขั้นสอน


30 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต ขั้นสรุป ขั้นรู้ (Knowing) 1. ครูทบทวนความรู้เรื่องสับเซตและจำนวนสับเซต 2. ครูให้นักเรียนพิจารณาเซต A และหาสับเซตทั้งหมดของเซต A จากหนังสือเรียนหน้า 14 จากนั้นให้ นักเรียนหาเซตของสับเซตทั้งหมดของเซต A จากนั้นครูสรุปว่า เซตของสับเซตทั้งหมดของเซต A เรียกว่า เพาเวอร์เซตของเซต A เขียนแทนด้วย P(A) และให้นักเรียนร่วมกันพิจารณาจำนวนสมาชิกของเพาเวอร์ เซตและจำนวนสับเซต เพื่อนำไปสู่การสรุปว่า “ถ้า A เป็นเซตจำกัดที่มีสมาชิก n ตัว แล้วเพาเวอร์เซตของ เซต A มีจำนวนสมาชิกเท่ากับ 2 n ตัว นั่นคือ n(P(A)) = 2 n ” ขั้นเข้าใจ (Understanding) 1. ครูให้นักเรียนศึกษาตัวอย่างที่ 7 จากหนังสือเรียนหน้า 14 แล้วให้ทำ “ลองทำดู” โดยครูตรวจสอบความ ถูกต้อง 2. ครูให้นักเรียนทำแบบฝึกทักษะ 1.3 จากนั้นครูสุ่มนักเรียนออกมาเฉลยหน้าชั้นเรียน โดยครูตรวจสอบ ความถูกต้อง 3. ครูให้นักเรียนทำ Exercise 1.3 ในหนังสือแบบฝึกหัดเป็นการบ้าน ขั้นลงมือทำ (Doing) ครูให้นักเรียนจับคู่ทำใบงานที่ 1.2 เรื่องสับเซตและเพาเวอร์เซต แล้วแลกเปลี่ยนความรู้กับคู่ของตนเอง จากนั้นครูสุ่มนักเรียนทีละคู่ให้เฉลยคำตอบ โดยครูตรวจสอบความถูกต้อง 1. ครูถามตอบนักเรียนเพื่อทบทวนความรู้เรื่อง สับเซตและเพาเวอร์เซต 2. ครูให้นักเรียนเขียนสรุปความรู้รวบยอดเรื่อง สับเซตและเพาเวอร์เซต ลงในสมุด ชั่วโมงที่ 2


31 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต 7. การวัดและประเมินผล รายการวัด วิธีการ เครื่องมือ เกณฑ์การประเมิน 7.1 ประเมินระหว่างการจัด กิจกรรมการเรียนรู้ 1) สับเซตและ เพาเวอร์เซต - ตรวจใบงานที่ 1.2 - ตรวจแบบฝึกทักษะ 1.3 - ตรวจ Exercise 1.3 - ใบงานที่ 1.2 - แบบฝึกทักษะ 1.3 - Exercise 1.3 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 2) นำเสนอผลงาน - ประเมินการนำเสนอ ผลงาน - แบบประเมินการ นำเสนอผลงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 4) พฤติกรรมการทำงาน รายบุคคล - สังเกตพฤติกรรม การทำงานรายบุคคล - แบบสังเกตพฤติกรรม การทำงานรายบุคคล - ระดับคุณภาพ 2 ผ่านเกณฑ์ 5) พฤติกรรมการทำงาน กลุ่ม - สังเกตพฤติกรรม การทำงานกลุ่ม - แบบสังเกตพฤติกรรม การทำงานกลุ่ม - ระดับคุณภาพ 2 ผ่านเกณฑ์ 6) คุณลักษณะ อันพึงประสงค์ - สังเกตความมีวินัย ใฝ่เรียนรู้ และมุ่งมั่น ในการทำงาน - แบบประเมิน คุณลักษณะ อันพึงประสงค์ - ระดับคุณภาพ 2 ผ่านเกณฑ์ 8. สื่อ/แหล่งการเรียนรู้ 8.1 สื่อการเรียนรู้ 1) หนังสือเรียนรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 2) แบบฝึกหัดรายวิชเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 3) ใบงานที่ 1.2 เรื่อง สับเซตและเพาเวอร์เซต 8.2 แหล่งการเรียนรู้ 1) ห้องสมุด 2) แหล่งชุมชน 3) อินเทอร์เน็ต


32 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต เรื่อง สับเซตและเพาเวอร์เซต คำชี้แจง : เติมค ำตอบลงในช่องว่ำงให้ถูกต้อง 1. ก ำหนด A = { 1, 2,{3} } , B = { 1, 2, 3, 4 } ให้พิจำรณำว่ำข้อควำมต่อไปนี้ถูกหรือผิด 1) { 1, 2 } ⊂ A ……………………………………………………………………………………………..................................................................... 2) { 1, 2, 3 } ⊂ A ……………………………………………………………………………………………..................................................................... 3) { 3, 4 } ⊂ B ……………………………………………………………………………………………..................................................................... 4) { 3 } ⊂ B ……………………………………………………………………………………………..................................................................... 5) A ⊂ B ……………………………………………………………………………………………..................................................................... 2. ให้หาเพาเวอร์เซตของเซตต่อไปนี้ 1) A = ∅ ……………………………………………………………………………………………..................................................................... 2) B = {∅,{∅}} ……………………………………………………………………………………………..................................................................... 3) C = { 1, 2,{2}} ……………………………………………………………………………………………..................................................................... 4) D = { m,{n},{k}} ……………………………………………………………………………………………..................................................................... 5) E = { ∅, 1,{2},{3}} ……………………………………………………………………………………………..................................................................... ใบงานที่ 1.2


33 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต ผิด ผิด ผิด ถูก ถูก P(A) = { ∅,{∅},{{∅}},{∅,{∅}} } P(A) = { ∅ } P(A) = { ∅,{1},{{2}},{1,{2}} } P(A) = { ∅,{m},{{n}},{{k}},{m,{n}},{m,{k}},{{n},{k}},{m,{n},{k}} } P(A) = { ∅,{∅},{1},{{2}},{{3}},{∅, 1},{∅,{2}},{∅,{3}},{1,{2}},{1,{3}},{{2},{3}},{∅, 1,{2}}, {∅, 1,{3}},{∅,{2},{3}},{1,{2},{3}},{∅, 1,{2},{3}} } เรื่อง สับเซตและเพาเวอร์เซต คำชี้แจง : เติมค ำตอบลงในช่องว่ำงให้ถูกต้อง 1. ก ำหนด A = { 1, 2,{3} } , B = { 1, 2, 3, 4 } ให้พิจำรณำว่ำข้อควำมต่อไปนี้ถูกหรือผิด 1) { 1, 2 } ⊂ A ……………………………………………………………………………………………..................................................................... 2) { 1, 2, 3 } ⊂ A ……………………………………………………………………………………………..................................................................... 3) { 3, 4 } ⊂ B ……………………………………………………………………………………………..................................................................... 4) {{3}} ⊂ B ……………………………………………………………………………………………..................................................................... 5) A ⊂ B ……………………………………………………………………………………………..................................................................... 2. ให้หาเพาเวอร์เซตของเซตต่อไปนี้ 1) A = ∅ ………………………………………………………………………………………..................................................................... 2) B = {∅,{∅}} ……………………………………………………………………………………………..................................................................... 3) C = { 1,{2}} ……………………………………………………………………………………………..................................................................... 4) D = { m,{n},{k}} ……………………………………………………………………………………………..................................................................... 5) E = { ∅, 1,{2},{3}} ……………………………………………………………………………………………..................................................................... ……………………………………………………………………………………………..................................................................... ใบงานที่ 1.2 เฉลย


34 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต 7. การวัดและประเมินผล รายการวัด วิธีการ เครื่องมือ เกณฑ์การประเมิน 7.1 ประเมินระหว่างการจัด กิจกรรมการเรียนรู้ 1) สับเซตและ เพาเวอร์เซต - ตรวจใบงานที่ 1.2 - ตรวจแบบฝึกทักษะ 1.3 - ตรวจ Exercise 1.3 - ใบงานที่ 1.2 - แบบฝึกทักษะ 1.3 - Exercise 1.3 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 2) นำเสนอผลงาน - ประเมินการนำเสนอ ผลงาน - แบบประเมินการ นำเสนอผลงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 4) พฤติกรรมการทำงาน รายบุคคล - สังเกตพฤติกรรม การทำงานรายบุคคล - แบบสังเกตพฤติกรรม การทำงานรายบุคคล - ระดับคุณภาพ 2 ผ่านเกณฑ์ 5) พฤติกรรมการทำงาน กลุ่ม - สังเกตพฤติกรรม การทำงานกลุ่ม - แบบสังเกตพฤติกรรม การทำงานกลุ่ม - ระดับคุณภาพ 2 ผ่านเกณฑ์ 6) คุณลักษณะ อันพึงประสงค์ - สังเกตความมีวินัย ใฝ่เรียนรู้ และมุ่งมั่น ในการทำงาน - แบบประเมิน คุณลักษณะ อันพึงประสงค์ - ระดับคุณภาพ 2 ผ่านเกณฑ์ 8. สื่อ/แหล่งการเรียนรู้ 8.1 สื่อการเรียนรู้ 4) หนังสือเรียนรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 5) แบบฝึกหัดรายวิชเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 8.2 แหล่งการเรียนรู้ 1) ห้องสมุด 2) แหล่งชุมชน 3) อินเทอร์เน็ต


35 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 3 สับเซตและเพาเวอร์เซต 9. ความเห็นของผู้บริหารสถานศึกษาหรือผู้ที่ได้รับมอบหมาย ข้อเสนอแนะ ลงชื่อ .............. “”””””............ ( .......................... ....) ตำแหน่ง ……………….................. 10. บันทึกผลหลังการสอน ด้านความรู้ ด้านสมรรถนะสำคัญของผู้เรียน ด้านคุณลักษณะอันพึงประสงค์ ด้านความสามารถทางคณิตศาสตร์ ด้านอื่น ๆ (พฤติกรรมเด่น หรือพฤติกรรมที่มีปัญหาของนักเรียนเป็นรายบุคคล (ถ้ามี)) ปัญหา/อุปสรรค แนวทางการแก้ไข


36 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 4 แผนภาพเวนน์ แผนการจัดการเรียนรู้ที่ 4 แผนภาพเวนน์ เวลา 1 ชั่วโมง 1. ผลการเรียนรู้ 1. เข้าใจและใช้ความรู้เกี่ยวกับเซต ในการสื่อสารและสื่อความหมายทางคณิตศาสตร์ 2. จุดประสงค์การเรียนรู้ 1) บอกสมาชิกของเซตและแปลความหมายจากแผนภาพเวนน์ที่กำหนดให้ได้ (K) 2) เขียนแผนภาพเวนน์แทนเซตที่กำหนดได้(P) 3) มีความสามารถในการสื่อสาร สื่อความหมายทางคณิตศาสตร์ และการนำเสนออภิปรายสรุปแผนภาพเวนน์ได้ อย่างชัดเจน (P) 4) รับผิดชอบต่อหน้าที่ที่ได้รับมอบหมาย (A) 3. สาระการเรียนรู้ สาระการเรียนรู้เพิ่มเติม สาระการเรียนรู้ท้องถิ่น ความรู้เบื้องต้นและสัญลักษณ์พื้นฐานเกี่ยวกับเซต พิจารณาตามหลักสูตรของสถานศึกษา 4. สาระสำคัญ/ความคิดรวบยอด การเขียนแผนภาพ จะนิยมแทนเอกภพสัมพัทธ์(U)ด้วยรูปสี่เหลี่ยมผืนผ้า หรืออาจเป็นรูปปิดอื่น ๆ ก็ได้ ส่วน เซตอื่น ๆ ที่เป็นสับเซตของเซต U นิยมแทนด้วยวงกลม วงรี รูปสี่เหลี่ยมเล็ก หรือรูปปิดอื่น ๆ ซึ่งเขียนไว้ภายใน รูปปิดของเซต U 5. สมรรถนะสำคัญของผู้เรียนและคุณลักษณะอันพึงประสงค์ สมรรถนะสำคัญของผู้เรียน คุณลักษณะอันพึงประสงค์ 1. ความสามารถในการสื่อสาร 2. ความสามารถในการคิด 1) ทักษะกระบวนการคิดแก้ปัญหา 2) ทักษะการคิดคล่อง 3. ความสามารถในการแก้ปัญหา 1. มีวินัย 2. ใฝ่เรียนรู้ 3. มุ่งมั่นในการทำงาน 6. กิจกรรมการเรียนรู้ แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : แบบอุปนัย (Induction)


37 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 4 แผนภาพเวนน์ 1. ครูและนักเรียนร่วมกันเฉลยการบ้าน 2. ครูกล่าวถึงนักคณิตศาสตร์ คือ จอห์น เวนน์ และเลออนาร์ด ผู้คิดค้นการใช้แผนภาพเวนน์ – ออยเลอร์ ซึ่งในเวลาต่อมาเรียกว่า แผนภาพเวนน์ ในบางครั้งเพื่อความสะดวกจะเรียกสั้น ๆ ว่า แผนภาพ และ ประโยชน์ของแผนภาพที่ใช้เแสดงความสัมพันธ์ระหว่างเซตใด ๆ เพื่อให้เกิดความเข้าใจมากยิ่งขึ้น รวมถึง การใช้แผนภาพซึ่งเป็นวิธีที่สะดวกในการแก้ปัญหาต่าง ๆ 1. ครูเขียนแผนภาพ รูป ก รูป ข และ รูป ค บนกระดาน จากหนังสือเรียนหน้า 16 แล้วตั้งคำถามดังนี้ • จากแผนภาพรูป ก รูป ข และรูป ค แต่ละแผนภาพมีทั้งหมดกี่เซต มีเซตอะไรบ้าง (แนวตอบ มี 3 เซต ประกอบด้วย เซตเอกภพสัมพัทธ์(U) เซต A และเซต B) • แผนภาพใดที่เซต A และเซต B แสดงการทับซ้อนกันของเซตทั้งหมด (แนวตอบ รูป ก) • แผนภาพใดที่เซต A และเซต B แสดงการทับกันของเซตบางส่วน (แนวตอบ รูป ข) • แผนภาพใดที่เซต A และเซต B ไม่มีส่วนใดของเซตซ้อนทับกันเลย (แนวตอบ รูป ค) จากนั้นครูอธิบายเพิ่มเติมว่า รูป ก รูป ข และ รูป ค อยู่ในเซต U แสดงว่า เซต A และเซต B เป็น สับเซตของ U จากรูป ก เซต A อยู่ในเซต B ทั้งหมด จะได้ว่า เซต A เป็นสับเซตของเซต B จากรูป ข เซต A และ เซต B มีสมาชิกบางส่วนร่วมกัน จะเรียกว่า เซตที่มีส่วนร่วมกัน และจากรูป ค เซต A และเซต B ไม่มีสมาชิกร่วมกันเลย เรียกว่า เซตไม่มีส่วนร่วม 2. ครูให้นักเรียนแบ่งกลุ่ม เป็น 5 กลุ่ม เขียนแผนภาพแสดงความสัมพันธ์ของเซต A เซต B และเซต C ดังนี้ - กลุ่มที่ 1 เซต A เป็นสับเซตของเซต B และเซต B เป็นสับเซตของเซต C - กลุ่มที่ 2 เซต A เซต B และเซต C ไม่มีสมาชิกร่วมกันเลย - กลุ่มที่ 3 เซต A เซต B และเซต C มีสมาชิกร่วมกันบางส่วน - กลุ่มที่ 4 เซต A และเซต B มีสมาชิกร่วมกันบางส่วน และทั้งสองเซตเป็นสับเซตของเซต C - กลุ่มที่ 5 เซต A และเซต B มีสมาชิกบางส่วนร่วมกัน และทั้งสองเซตไม่มีสมาชิกร่วมกับเซต C จากนั้นครูให้ตัวแทนแต่ละกลุ่มออกมาเขียนแผนภาพบนกระดาน โดยครูตรวจสอบความถูกต้อง 3. ครูให้นักเรียนศึกษาตัวอย่างที่ 8 – 10 จากหนังสือเรียนหน้า 17 – 18 แล้วให้ทำ “ลองทำดู” จากนั้น ครูและนักเรียนร่วมกันเฉลยคำตอบ ขั้นสอน ขั้นนำ


38 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 4 แผนภาพเวนน์ 4. ครูให้นักเรียนทำแบบฝึกทักษะ 1.4 จากนั้นครูสุ่มนักเรียนออกมาเฉลยคำตอบหน้าชั้นเรียน โดยครูตรวจสอบความถูกต้อง 5. ครูให้นักเรียนทำ Exercise 1.4 ในหนังสือแบบฝึกหัดเป็นการบ้าน 1. ครูถามตอบนักเรียนเพื่อทบทวนความรู้เรื่อง แผนภาพเวนน์ 2. ครูให้นักเรียนเขียนสรุปความรู้รวบยอดเรื่อง แผนภาพเวนน์ ลงในสมุด 7. การวัดและประเมินผล รายการวัด วิธีการ เครื่องมือ เกณฑ์การประเมิน 7.1 การประเมินระหว่างการจัด กิจกรรมการเรียนรู้ 1) แผนภาพเวนน์ - ตรวจแบบฝึกทักษะ 1.4 - ตรวจ Exercise 1.4 - แบบฝึกทักษะ 1.4 - Exercise 1.4 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 2) การนำเสนอผลงาน - แบบประเมินการ นำเสนอผลงาน - แบบประเมินการ นำเสนอผลงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 3) พฤติกรรมการทำงาน รายบุคคล - สังเกตพฤติกรรม การทำงานรายบุคคล - แบบสังเกตพฤติกรรม การทำงานรายบุคคล - ระดับคุณภาพ 2 ผ่านเกณฑ์ 4) พฤติกรรมการทำงาน กลุ่ม - สังเกตพฤติกรรม การทำงานกลุ่ม - แบบสังเกตพฤติกรรม การทำงานกลุ่ม - ระดับคุณภาพ 2 ผ่านเกณฑ์ 5) คุณลักษณะอันพึง ประสงค์ - สังเกตความมีวินัย ใฝ่เรียนรู้ และมุ่งมั่น ในการทำงาน - แบบประเมิน คุณลักษณะ อันพึงประสงค์ - ระดับคุณภาพ 2 ผ่านเกณฑ์ ขั้นสรุป


39 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 4 แผนภาพเวนน์ 8. สื่อ/แหล่งการเรียนรู้ 8.1 สื่อการเรียนรู้ 1) หนังสือเรียนรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เรื่อง เซต 2) แบบฝึกหัดรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เรื่อง เซต 8.2 แหล่งการเรียนรู้ 1) ห้องสมุด 2) แหล่งชุมชน 3) อินเทอร์เน็ต


40 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 4 แผนภาพเวนน์ 9. ความเห็นของผู้บริหารสถานศึกษาหรือผู้ที่ได้รับมอบหมาย ข้อเสนอแนะ ลงชื่อ ................................. ( ................................ ) ตำแหน่ง ....... 10. บันทึกผลหลังการสอน ด้านความรู้ ด้านสมรรถนะสำคัญของผู้เรียน ด้านคุณลักษณะอันพึงประสงค์ ด้านความสามารถทางคณิตศาสตร์ ด้านอื่น ๆ (พฤติกรรมเด่น หรือพฤติกรรมที่มีปัญหาของนักเรียนเป็นรายบุคคล (ถ้ามี)) ปัญหา/อุปสรรค แนวทางการแก้ไข


41 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต แผนการจัดการเรียนรู้ที่ 5 การดำเนินการของเซต เวลา 4 ชั่วโมง 1. ผลการเรียนรู้ 1. เข้าใจและใช้ความรู้เกี่ยวกับเซต ในการสื่อสารและสื่อความหมายทางคณิตศาสตร์ 2. จุดประสงค์การเรียนรู้ 1) หาเซตที่เกิดจากการยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์และผลต่างของเซตได้ (K) 2) สามารถเขียนแผนภาพเวนน์ เพื่ออธิบายการดำเนินการของเซตได้ (P) 3) มีความสามารถในการสื่อสาร สื่อความหมายทางคณิตศาสตร์และการน าเสนออภิปรายสรุป การด าเนินการของเซตได้ (P) 4) รับผิดชอบต่อหน้าที่ที่ได้รับมอบหมาย (A) 3. สาระการเรียนรู้ สาระการเรียนรู้เพิ่มเติม สาระการเรียนรู้ท้องถิ่น ยูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต พิจารณาตามหลักสูตรของสถานศึกษา 4. สาระสำคัญ/ความคิดรวบยอด การดำเนินการของเซต เป็นการสร้างเซตใหม่จากเซตสองเซตตามเงื่อนไขที่กำหนด ประกอบด้วย ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ และผลต่างระหว่างเซต ดังนี้ • ยูเนียนของเซต A และเซต B คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง สองเซต เขียนแทนสัญลักษณ์ด้วย A ∪ B • อินเตอร์เซกชันของเซต A และเซต B คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกทั้งเซต A และเซต B เขียนแทนด้วยสัญลักษณ์ด้วย A ∩ B • คอมพลีเมนต์ของเซต A ซึ่งเป็นสับเซตของเซต U คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ ไม่เป็นสมาชิกของเซต A เขียนแทนสัญลักษณ์ด้วย A ′ • ผลต่างระหว่างเซต A และเซต B คือ เซตที่ประกอบด้วยสมาชิกของเซต A แต่ไม่เป็นสมาชิกของเซต B เขียนแทนสัญลักษณ์ด้วย A − B


42 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต 5. สมรรถนะสำคัญของผู้เรียนและคุณลักษณะอันพึงประสงค์ สมรรถนะสำคัญของผู้เรียน คุณลักษณะอันพึงประสงค์ 1. ความสามารถในการสื่อสาร 2. ความสามารถในการคิด 1) ทักษะการระบุ 2) ทักษะการคิดคล่อง 3) ทักษะการนำความรู้ไปใช้ 3. ความสามารถในการแก้ปัญหา 1. มีวินัย 2. ใฝ่เรียนรู้ 3. มุ่งมั่นในการทำงาน 6. กิจกรรมการเรียนรู้ แนวคิด/รูปแบบการสอน/วิธีการสอน/เทคนิค : แบบอุปนัย (Induction) 1. ครูและนักเรียนร่วมกันเฉลยการบ้าน 2. ครูทบทวนการดำเนินการของจำนวน คือ การบวก การลบ การคูณและการหาร ซึ่งสามารถนำจำนวนสอง จำนวนมาบวก ลบ คูณ และหารเพื่อให้เกิดจำนวนใหม่ได้ แต่ในเรื่องเซตนักเรียนไม่สามารถนำเซตสองเซต มาทำการบวก การลบ การคูณ และการหารได้ แต่ต้องอาศัยการดำเนินการของเซตในการหาคำตอบ 1. ครูให้นักเรียนพิจารณาเซตต่อไปนี้ แล้วตั้งคำถาม ดังนี้ A = { 1, 3, 5, 7 } B = { 5, 6, 7, 9 } C = { 1, 3, 5, 6, 7, 9 } • สมาชิกใดบ้างในเซต C ที่อยู่ในเซต A (แนวตอบ 1, 3, 5, 7) • สมาชิกใดบ้างในเซต C ที่อยู่ในเซต B (แนวตอบ 5, 6, 7, 9 ) • สมาชิกใดบ้างในเซต C ที่อยู่ในเซต A และเซต B (แนวตอบ 5, 7 ) ขั้นสอน ขั้นนำ ชั่วโมงที่ 1


43 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต จากคำถามข้างต้น ครูอธิบายเพิ่มเติมว่า เซต C มีสมาชิกที่อยู่ในเซต A เท่านั้น หรือมีสมาชิกที่อยู่ใน เซต B เท่านั้น หรือมีสมาชิกที่อยู่ในเซต A และเซต B เรียกเซต C ว่า ยูเนียนของเซต A และเซต B 2. ครูกล่าวถึงบทนิยามและสัญลักษณ์ของยูเนียน และเขียนแผนภาพแทนการยูเนียนของเซตเพื่อให้ นักเรียนเข้าใจมากยิ่งขึ้น 3. ครูให้นักเรียนศึกษาตัวอย่างที่ 11 – 13 จากหนังสือเรียนหน้า 19 – 20 แล้วให้ทำ “ลองทำดู” จากนั้น ครูตรวจสอบความถูกต้อง 4. ครูให้นักเรียนแบ่งกลุ่มออกเป็น 4 กลุ่ม โดยให้แต่ละกลุ่มกำหนดเซต A และเซต B แล้วหาเซตต่อไปนี้ - กลุ่มที่ 1 ∅ ∪ A และ A ∪ ∅ - กลุ่มที่ 2 A ∪ A - กลุ่มที่ 3 A ∪ B และ B ∪ A - กลุ่มที่ 4 (A ∪ B) ∪ C และ A ∪ (B ∪ C) จากนั้นให้แต่ละกลุ่มส่งตัวแทนออกมานำเสนอชั้นเรียน จากนั้นครูให้นักเรียนพิจารณาคำตอบของ แต่ละกลุ่ม แล้วตั้งคำถามดังนี้ • ∅ ∪ A = A ∪ ∅ = A หรือไม่ (แนวตอบ เท่ากัน) • A ∪ A = A หรือไม่ (แนวตอบ เท่ากัน) • A ∪ B = B ∪ A หรือไม่ (แนวตอบ เท่ากัน) • (A ∪ B) ∪ C = A ∪ (B ∪ C) หรือไม่ (แนวตอบ เท่ากัน) จากนั้นครูและนักเรียนร่วมกันสรุปเป็นพีชคณิตของเซต จากหนังสือเรียนหน้า 20 5. ครูทบทวนความรู้เรื่องการยูเนียนของเซต 6. ครูให้นักเรียนพิจารณาเซตต่อไปนี้ แล้วตั้งคำถาม ดังนี้ A = { 2, 3, 7 } B = { 1, 2, 3, 5 } C = { 2, 3 } • สมาชิกใดบ้างในเซต C ที่อยู่ในเซต A (แนวตอบ 2, 3) • สมาชิกใดบ้างในเซต C ที่อยู่ในเซต B (แนวตอบ 2, 3) ชั่วโมงที่ 2


44 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต • สมาชิกใดบ้างในเซต C ที่อยู่ในทั้งเซต A และเซต B (แนวตอบ 2, 3) จากคำถามข้างต้น ครูอธิบายเพิ่มเติมว่า เซต C ที่อยู่ในทั้งเซต A และเซต B เรียกเซต C ว่า อินเตอร์เซกชันของเซต A และเซต B 7. ครูกล่าวถึงบทนิยามและสัญลักษณ์ของอินเตอร์เซกชัน และเขียนแผนภาพแทนการอินเตอร์เซกชันของ เซตเพื่อให้นักเรียนเข้าใจมากยิ่งขึ้น 8. ครูให้นักเรียนศึกษาตัวอย่างที่ 14 – 15 จากหนังสือเรียนหน้า 21 – 22 แล้วให้ทำ “ลองทำดู” โดย ครูตรวจสอบความถูกต้อง 9. ครูให้นักเรียนจับคู่แล้วทำ “Thinking Time” ใส่กระดาษ A4 จากนั้นครูเฉลยคำตอบที่เป็นไปได้ทั้งหมด บนกระดาน และอธิบายอย่างละเอียด 10. ครูให้นักเรียนแบ่งกลุ่มออกเป็น 6 กลุ่ม โดยให้แต่ละกลุ่มกำหนดเซต A และเซต B แล้วหาเซตต่อไปนี้ - กลุ่มที่ 1 ∅ ∩ A และ A ∩ ∅ - กลุ่มที่ 2 A ∩ A - กลุ่มที่ 3 A ∩ B และ B ∩ A - กลุ่มที่ 4 (A ∩ B) ∩ C และ A ∩ (B ∩ C) - กลุ่มที่ 5 A ∪ (B ∩ C) และ (A ∪ B) ∩ (A ∪ C) - กลุ่มที่ 6 A ∩ (B ∪ C) และ (A ∩ B) ∪ (A ∩ C) จากนั้นให้แต่ละกลุ่มส่งตัวแทนออกมานำเสนอชั้นเรียน จากนั้นครูให้นักเรียนพิจารณาคำตอบของ แต่ละกลุ่ม แล้วตั้งคำถามดังนี้ • ∅ ∩ A = A ∩ ∅ = ∅ หรือไม่ (แนวตอบ เท่ากัน) • A ∩ A = A หรือไม่ (แนวตอบ เท่ากัน) • A ∩ B = B ∩ A หรือไม่ (แนวตอบ เท่ากัน) • (A ∩ B) ∩ C = A ∩ (B ∩ C) หรือไม่ (แนวตอบ เท่ากัน) • A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) และ A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) หรือไม่ (แนวตอบ เท่ากัน) จากนั้นครูและนักเรียนร่วมกันสรุปเป็นพีชคณิตของเซต จากหนังสือเรียนหน้า 23


45 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต 11. ครูทบทวนเรื่องยูเนียนและอินเตอร์เซกชันของเซต 12. ครูให้นักเรียนพิจารณาเซตต่อไปนี้ U = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10 } A = { 1, 3, 5, 7,9 } แล้วถามคำถามว่า “สมาชิกตัวใดที่อยู่ในเซต U แต่ไม่อยู่ในเซต A ” (แนวตอบ 2, 4, 6, 8, 10) จากนั้นครูอธิบายเพิ่มเติมว่า สมาชิกที่อยู่ในเซต U แต่ไม่อยู่ในเซต A ว่า คอมพลีเมนต์ของเซต A เขียน แทนด้วย A ′ ดังนั้น จากคำถามข้างต้น เราจะกล่าวได้ว่า { 2, 4, 6, 8, 10 } เป็นคอมพลีเมนต์ของเซต A หรือ A ′ = { 2, 4, 6, 8, 10 } 13. ครูกล่าวถึงบทนิยามและสัญลักษณ์ของคอมพลีเมนต์ และเขียนแผนภาพแทนการคอมพลีเมนต์ของ เซตเพื่อให้นักเรียนเข้าใจมากยิ่งขึ้น 14. ครูให้นักเรียนศึกษาตัวอย่างที่ 16 – 17 จากหนังสือเรียนหน้า 23 – 24 แล้วให้ทำ “ลองทำดู” จากนั้น ครูตรวจสอบความถูกต้อง 15. ครูให้นักเรียนพิจารณาเซตต่อไปนี้ แล้วตั้งคำถาม ดังนี้ U = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10 } A = { 1, 2, 5, 6, 9 } B = { 1, 3, 4, 5 } • ให้หาเซตของ B ′ (แนวตอบ B ′ = { 2, 6, 7, 8, 9, 10 } ) • ให้หาเซตของ A ∩ B ′ (แนวตอบ A ∩ B ′ = { 2, 6, 9 } ) จากนั้นครูเขียนแผนภาพของ A ∩ B ′ และระบุสมาชิกลงแผนภาพ พร้อมทั้งแรเงาบริเวณที่มีสมาชิก 2, 6 และ 9 ดังนี้ จากแผนภาพครูสรุปได้ว่า เซตที่มีสมาชิกอยู่ในเซต A แต่ไม่อยู่ในเซต B เรียกว่า ผลต่างระหว่างเซต A และเซต B เขียนแทนด้วย A – B ชั่วโมงที่ 3 A 7 8 10 3 4 1 5 B U 2 6 9


46 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต ขั้นสรุป 16. จากแผนภาพข้างต้น ครูให้นักเรียนหาเซตของ B – A พร้อมทั้งแรเงาแผนภาพ โดยครูตรวจสอบความ ถูกต้อง 17. ครูอธิบายตัวอย่างที่ 18 และ 19 จากหนังสือเรียนหน้า 25 แล้วสรุปให้นักเรียนเข้าใจได้ว่า จากนั้นครูให้นักเรียนทำ “ลองทำดู” จากตัวอย่างที่ 18 และ 19 เพื่อตรวจสอบความเข้าใจ 18. ครูให้นักเรียนศึกษาสมบัติเพิ่มจากพีชคณิตของเซต จากหนังสือเรียนหน้า 26 19. ครูทบทวนเรื่องการดำเนินการของเซต 20. ครูให้นักเรียนแบ่งกลุ่ม กลุ่มละ 3 – 4 คน แล้วแต่ละกลุ่มศึกษาแนวข้อสอบ PAT 1 โดยครูอธิบาย วิธีทำอย่างละเอียด จากนั้นให้แต่ละกลุ่มสืบค้นหาข้อสอบ PAT1 เรื่องการดำเนินการของเซต กลุ่มละ 1 ข้อ แล้วให้แต่ละกลุ่มออกมานำเสนอหน้าชั้นเรียน จากนั้นครูและนักเรียนแต่ละกลุ่มร่วมกันอภิปราย ข้อสอบในแต่ละข้อโดยครูตรวจสอบความถูกต้อง 21. ครูให้นักเรียนทำแบบฝึกทักษะ 1.5 ดังนี้ • ระดับพื้นฐาน ให้ทำเป็นรายบุคคล • ระดับกลาง ให้จับคู่ • ระดับท้ายทาย ให้ทำเป็นกลุ่ม กลุ่มละ 3 – 4 คน จากนั้นครูและนักเรียนร่วมกันเฉลย โดยครูตรวจสอบความถูกต้อง 22. ครูให้นักเรียนทำใบงานที่ 1.3 เรื่อง การดำเนินการของเซต จากนั้นครูเฉลยคำตอบ 23. ครูให้นักเรียนทำ Exercise 1.5 ในหนังสือแบบฝึกหัดเป็นการบ้าน 1. ครูถามตอบนักเรียนเพื่อทบทวนความรู้เรื่อง เกี่ยวกับการดำเนินการของเซต 2. ครูให้นักเรียนเขียนสรุปความรู้รวบยอดเรื่อง การดำเนินการของเซต ลงในสมุด ชั่วโมงที่ 4 A − B ≠ B − A (A ∪ B) ′ = A ′ ∩ B ′


47 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต 7. การวัดและประเมินผล รายการวัด วิธีการ เครื่องมือ เกณฑ์การประเมิน 7.1 ประเมินระหว่างการจัด กิจกรรมการเรียนรู้ 1) การดำเนินการ ของเซต - ตรวจใบงานที่ 1.3 - ตรวจแบบฝึกทักษะ 1.5 - ตรวจ Exercise 1.5 - ใบงานที่ 1.3 - แบบฝึกทักษะ 1.5 - Exercise 1.5 - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ - ร้อยละ 60 ผ่านเกณฑ์ 2) นำเสนอผลงาน - ประเมินการนำเสนอ ผลงาน - แบบประเมินการ นำเสนอผลงาน - ระดับคุณภาพ 2 ผ่านเกณฑ์ 4) พฤติกรรมการ ทำงานรายบุคคล - สังเกตพฤติกรรม การทำงานรายบุคคล - แบบสังเกตพฤติกรรม การทำงานรายบุคคล - ระดับคุณภาพ 2 ผ่านเกณฑ์ 5) พฤติกรรมการทำงาน กลุ่ม - สังเกตพฤติกรรม การทำงานกลุ่ม - แบบสังเกตพฤติกรรม การทำงานกลุ่ม - ระดับคุณภาพ 2 ผ่านเกณฑ์ 6) คุณลักษณะ อันพึงประสงค์ - สังเกตความมีวินัย ใฝ่เรียนรู้ และมุ่งมั่น ในการทำงาน - แบบประเมิน คุณลักษณะ อันพึงประสงค์ - ระดับคุณภาพ 2 ผ่านเกณฑ์ 8. สื่อ/แหล่งการเรียนรู้ 8.1 สื่อการเรียนรู้ 1) หนังสือเรียนรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 2) แบบฝึกหัดรายวิชาเพิ่มเติม คณิตศาสตร์ ม.4 เล่ม 1 หน่วยการเรียนรู้ที่ 1 เซต 3) ใบงานที่ 1.3 เรื่อง การดำเนินการของเซต 8.2 แหล่งการเรียนรู้ 1) ห้องสมุด 2) แหล่งชุมชน 3) อินเทอร์เน็ต


48 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต เรื่อง การดำเนินการของเซต คำชี้แจง : เติมค ำตอบลงในช่องว่ำงให้ถูกต้อง 1. ก ำหนด U = { 1, 2, 3, … ,20 } A = { 1, 5, 7, 12, 15, 20 } B = { 2, 4, 5, 7, 15, 17, 18} และ C = { 1, 3, 5, 7, 15, 19, 20 } ให้เขียนเซตต่อไปนี้แบบแจกแจงสมำชิก 1) A ∪ B ∪ C ……………………………………………………………………………………………..................................................................... 2) A ∩ B ∩ C ……………………………………………………………………………………………..................................................................... 3) (A ∪ B) ∩ C ……………………………………………………………………………………………..................................................................... 4) (A ∩ B) ∪ C ……………………………………………………………………………………………..................................................................... 5) (A − B) − C ……………………………………………………………………………………………..................................................................... 6) A − (B − C) ……………………………………………………………………………………………..................................................................... 7) (A ∩ B) ′ − C ……………………………………………………………………………………………..................................................................... 8) (A ′ ∪ B ′ ) ∩ C ′ ……………………………………………………………………………………………..................................................................... 9) (A ′ ∪ B) ∩ (A ′ ∪ C) ……………………………………………………………………………………………..................................................................... 10) (A − B) ′ ∩ (A − C) ′ ……………………………………………………………………………………………..................................................................... ใบงานที่ 1.3


49 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต { 1, 2, 3, 4, 5, 7, 12, 15, 17, 18, 19, 20 } { 5, 7, 15 } { 1, 5, 7, 15, 20 } { 1, 3, 5, 7, 15, 19, 20 } { 12 } { 1, 5, 7, 12, 15, 20 } { 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 } { 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 } { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19 } { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19 } เรื่อง การดำเนินการของเซต คำชี้แจง : เติมค ำตอบลงในช่องว่ำงให้ถูกต้อง 1. ก ำหนด U = { 1, 2, 3, … ,20 } A = { 1, 5, 7, 12, 15, 20 } B = { 2, 4, 5, 7, 15, 17, 18} และ C = { 1, 3, 5, 7, 15, 19, 20 } ให้เขียนเซตต่อไปนี้แบบแจกแจงสมำชิก 1) A ∪ B ∪ C ……………………………………………………………………………………………..................................................................... 2) A ∩ B ∩ C ……………………………………………………………………………………………..................................................................... 3) (A ∪ B) ∩ C ……………………………………………………………………………………………..................................................................... 4) (A ∩ B) ∪ C ……………………………………………………………………………………………..................................................................... 5) (A − B) − C ………………………………………………………………………………………..................................................................... 6) A − (B − C) ……………………………………………………………………………………………..................................................................... 7) (A ∩ B) ′ − C …………………………………………………………………………………….............................................................................. 8) (A ′ ∪ B ′ ) ∩ C ′ ……………………………………………………………………………………………..................................................................... 9) (A ′ ∪ B) ∩ (A ′ ∪ C) ……………………………………………………………………………………………..................................................................... 10) (A − B) ′ ∩ (A − C) ′ ……………………………………………………………………………………………..................................................................... ใบงานที่ 1.3 เฉลย


50 หน่วยการเรียนรู้ที่ 1 เซต แผนฯ ที่ 5 การดำเนินการของเซต 9. ความเห็นของผู้บริหารสถานศึกษาหรือผู้ที่ได้รับมอบหมาย ข้อเสนอแนะ ลงชื่อ ........................................ ( ...................................... ) ตำแหน่ง ………………….................. 10. บันทึกผลหลังการสอน ด้านความรู้ ด้านสมรรถนะสำคัญของผู้เรียน ด้านคุณลักษณะอันพึงประสงค์ ด้านความสามารถทางคณิตศาสตร์ ด้านอื่น ๆ (พฤติกรรมเด่น หรือพฤติกรรมที่มีปัญหาของนักเรียนเป็นรายบุคคล (ถ้ามี)) ปัญหา/อุปสรรค แนวทางการแก้ไข


Click to View FlipBook Version