The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by RASHIDAH BINTI JAMIL Moe, 2021-03-01 02:40:05

WAVES

WAVES

MODUL • Fizik TINGKATAN 5

1 Gelombang

Waves

Objektif pembelajaran / Learning objective UNIT 1

• Memahami gelombang. / Understanding waves.
• Menganalisis pantulan gelombang. / Analysing reflection of waves.
• Menganalisis pembiasan gelombang. / Analysing refraction of waves.
• Menganalisis pembelauan gelombang. / Analysing diffraction of waves.
• Menganalisis interferens gelombang. / Analysing interference of waves.
• Menganalisis gelombang bunyi. / Analysing sound waves.
• Menganalisis gelombang elektromagnet. / Analysing electromagnetic waves.

Gelombang
1.1 Waves

1 Maksud gelombang: Gangguan yang memindahkan tenaga antara dua titik melalui getaran zarah.
Meaning of waves : Disturbance that transmits energy between two points through particle vibration.

2 Apabila tenaga dipindahkan oleh gelombang daripada sumber yang bergetar kepada penerima, maka tidak ada pemindahan
zarah-zarah antara dua titik. / When energy is transferred by wave from a vibrating source to a distant receiver, there is no transfer
of particles between the two points.

Muka gelombang / Wavefront

Garisan atau permukaan yang menyambungkan titik-titik pada fasa yang sama.

The locus of points which vibrates in phase .

Definisi muka Muka gelombang Titik dalam fasa yang sama
gelombang Wavefront Points in phase
Definition of
wavefront C

C = Puncak / Crest
T = Lembangan / Trough

T

Muka gelombang membulat Muka gelombang satah
Circular wavefront Plane wavefront

Jenis muka Arah perambatan Arah perambatan gelombang
gelombang gelombang The direction of wave
Types of The direction of wave propagation
wavefront propagation
Muka gelombang
Muka gelombang / Wavefront Wavefront

Penjelasan Arah perambatan gelombang adalah berserenjang dengan muka gelombang.
Explanation The direction of the propagation of a wave is perpendicular to its wavefront.

3 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Perbandingan antara gelombang melintang dan gelombang membujur: Gelombang membujur
Comparison between transverse wave and longitudinal wave: Longitudinal waves

Gelombang melintang
Transverse waves

Gelombang melintang ialah gelombang di mana Gelombang membujur ialah gelombang yang mana
zarah-zarah mediumnya bergetar pada arah yang zarah-zarah mediumnya bergetar pada arah yang

Takrif berserenjang dengan arah perambatan gelombang. selari dengan arah perambatan gelombang.
Definition Transverse waves are waves in which the direction
of vibration of the particles of the medium is Longitudinal waves are waves in which the direction

perpendicular to the direction of wave propagation. of vibration of the particles of the medium is

1UNIT parallel to the direction of wave propagation.

Rajah Arah getaran zarah Arah Arah perambatan gelombang
Diagram The direction of vibration of the particles perambatan Direction of wave propagation
CC gelombang
The direction CR CRC
TT of wave C = Mampatan / Compression
C = Puncak / Crest propagation Arah getaran zarah R = Renggangan / Rarefaction
T = Lembangan / Trough Direction of vibration of
the particles

Sesaran ayunan Panjang gelombang, λ Amplitud, a Arah getaran spring
Dsiplacement of oscillation Wavelength, λ Amplitude, a Direction of the vibration
of the spring
Titik dalam fasa yang sama Jarak dari
Points in phase sumber
Distance
from
source

λ

Contoh Gelombang air, gelombang cahaya Gelombang bunyi
Example Water wave, light wave Sound wave

Video 4

Gelombang
Waves

https://goo.gl/vOTHAh

© Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Peristilahan dalam gelombang
Terminology in waves

Amplitud, a Maksud : Sesaran maksimum dari kedudukan keseimbangan.
Amplitude, a Meaning : Maximum displacement from the equilibrium position.
(i) Unit SI / SI unit : m

(ii) Petunjuk kepada purata tenaga gelombang.

a kedudukan Indicator for the average energy of waves.

keseimbangan (iii) Amplitud semakin bertambah, tenaga gelombang semakin bertambah.
the equilibrium As amplitude increases, the energy of waves increases.
a position
(iv) Tenaga gelombang berkadar langsung dengan kuasa dua amplitud.

Energy of waves is directly proportional to the square of the amplitude.

Panjang gelombang, λ Maksud : UNIT 1
Wavelength, λ Meaning :

Puncak Lembangan (i) Bagi gelombang melintang; jarak di antara dua puncak atau dua
Crest Trough lembangan berturutan dalam suatu gelombang.
For transverse wave, distance between two consecutive peak or two
λ consecutive troughs of waves.

λ (ii) Bagi gelombang membujur; panjang gelombang ialah jarak di antara
Gelombang melintang titik tengah dua renggangan yang berturutan atau jarak di antara dua
titik tengah dua mampatan yang berturutan.
Transverse wave For longitudinal waves; the wavelength is distance between the centre
of two consecutive rarefaction or distance between two consecutive
λ R: Renggangan / Rarefaction compression.

λ C: Mampatan (iii) Mampatan : Kawasan di mana zarah-zarah rapat antara satu sama lain
Compression dan mengalami tekanan tinggi serta mempunyai ketumpatan tinggi.
Gelombang membujur Compression : The region where the particles are closest together and
Longitudinal waves undergoes high pressure and has maximum density.

(iv) Renggangan : Kawasan di mana zarah-zarah jauh antara satu sama
lain dan mengalami tekanan rendah serta mempunyai ketumpatan
rendah.
Rarefaction : The region where the particles are further and undergoes
low pressure and has minimum density.

Maksud tempoh ayunan, T : Maksud frekuensi, f : Formula yang menghubungkaitkan T dan f :
Meaning of period, T : Meaning of frequency, f : Formula which relates T and f :

• Masa yang diambil untuk membuat • Bilangan ayunan lengkap dalam masa 1
satu ayunan lengkap / Time taken for satu saat / Number of oscillation in T = f
one complete oscillation 1 second

• Unit SI / SI unit : s • Unit SI / SI unit : Hz (s–1)

Halaju • Jarak perambatan gelombang dalam satu saat.
gelombang, v The distance propagated by a wave in one second.
Wavespeed, v
• Halaju gelombang bergantung pada medium di mana gelombang merambat menerusinya.
The wavespeed depends on the medium the waves are travelling through.

Puncak Titik pada gelombang dengan sesaran positif yang maksimum.
Crest
A point on a wave with the maximum positive displacement.

Lembangan Titik pada gelombang dengan sesaran negatif yang maksimum.
Trough
A point on a wave with the maximum negative displacement.

5 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Sistem ayunan / Oscillation system

Definisi ayunan Gerakan berkala yang berulang-alik pada kedudukan keseimbangan.
Definition of A periodic motion performs a repeated to-and-fro motion about an equilibrium position.
oscillation

Ayunan bandul ringkas dan getaran spring / Oscillation of pendulum and vibration of spring

Jenis ayunan Kedudukan
Type of oscillation keseimbangan
Equilibrium position
Satu ayunan lengkap
One oscillation

1UNIT Satu ayunan lengkap
One oscillation

Satu ayunan Pergerakan dari satu kedudukan tertentu ke kedudukan lain dan balik ke kedudukan yang asal .
lengkap The movement from a certain position to the other position and back to the original position .
One complete
oscillation

Graf sesaran-jarak (s – d) Graf sesaran-masa (s – t)
Displacement-distance graph (s – d) Displacement-time graph (s – t)

Sesaran, s (cm) Sesaran, s (cm)
Displacement, s (cm) Displacement, s (cm)

λT

a Jarak, d (cm) a Masa, t (s)
O Distance, d (cm) O Time, t (s)

Graf a a
Graph
λT
Kedudukan
keseimbangan a = Amplitud / Amplitude a = Amplitud / Amplitude
Equilibrium λ = Panjang gelombang T = Tempoh
position
Halaju Wavelength Period
Velocity
O = Kedudukan keseimbangan
The equillibrium position

Kedudukan objek di mana tiada daya paduan yang bertindak ke atasnya.
The position of the object where there is no resultant force acting on it.

Halaju gelombang = Frekuensi × Panjang gelombang f
Wavespeed = Frequency × Wavelength
v = f λ

vv

Graf
Graph

0λ 0f 0 λ

vαλ vαf f α 1
λ

© Nilam Publication Sdn. Bhd. 6

MODUL • Fizik TINGKATAN 5

Eksperimen 1. Tempoh bandul ringkas / Period of a simple pendulum
Experiment 2. Panjang gelombang air / Wavelength of water wave

Eksperimen 1. Tempoh Bandul Ringkas 2. Panjang Gelombang Air
Experiment Period of A Simple Pendulum Wavelength of Water Wave

Inferens Tempoh / Masa ayunan bergantung pada Panjang gelombang dipengaruhi oleh frekuensi.
Inference panjang bandul. Wavelength is influenced by frequency.
The period / time of oscillation depends on
the length of the pendulum.

Tempoh meningkat dengan panjang / Semakin panjang Semakin tinggi frekuensi, semakin pendek panjang UNIT 1

Hipotesis bandul ringkas, semakin panjang tempoh ayunan. gelombang.
Hypothesis
The period increases with length / The longer the The higher the frequency, the shorter the wavelength.

pendulum, the longer the period of oscillation.

Tujuan Mengkaji hubungan antara panjang dan tempoh Mengkaji hubungan antara frekuensi dan panjang
Aim ayunan bandul ringkas. gelombang bagi gelombang.
To investigate the relationship between the length and To investigate the relationship between frequency and
Pemboleh ubah the period of oscillation for a simple pendulum. wavelength of a wave.
Variables
Pemboleh ubah dimanipulasikan: / Manipulated variable: Pemboleh ubah dimanipulasikan: / Manipulated variable:
Senarai radas Panjang, ℓ / Length, ℓ Frekuensi penggetar / Frequency of the vibrator
dan bahan Pemboleh ubah bergerak balas: / Responding variable: Pemboleh ubah bergerak balas: / Responding variable:
List of apparatus Tempoh ayunan, T / Period of oscillation, T Panjang gelombang / Wavelength
and materials Pemboleh ubah yang dimalarkan: / Constant variable: Pemboleh ubah yang dimalarkan: / Constant variable:
Sudut ayunan (<10°), jisim ladung / Small angular Kedalaman air / Depth of water
displacement (< 10°), mass of pendulum bob

Jam randik, pembaris meter, kaki retort, Tangki riak, stroboskop mekanikal, pembaris meter,
pengapit-G dan 2 keping gabus / papan lapis. motor penggetar, kertas putih, bekalan kuasa, lampu
Stopwatch, metre ruler, thread, retort stand, G-clamp dan bar kayu. / Ripple tank, mechanical stroboscope,
and 2 small pieces of cork / plywood. metre ruler, vibrator motor, white paper, power supply,
lamp and wooden bar.

Motor Lampu
Motor Lamp

Air Stroboskop
Water mekanikal
Mechanical
Susunan radas Kaki retort stroboscope
Arrangement of the Retort stand
apparatus
Benang Bar
Thread getaran
Vibrating
bar

Ladung Kertas putih Satah gelombang air
Pendulum (skrin) Plane water waves
bob
White paper
(screen)

7 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

1. Radas dan bahan disediakan seperti dalam 1. Tangki riak disediakan seperti dalam rajah
dan sehelai kertas putih diletakkan di bawah
rajah dengan panjang bandul ditetapkan pada tangki riak.
A ripple tank is set up as shown and a sheet of
90.0 cm. white paper is placed under the ripple tank.
2. Hidupkan suis motor penggetar pada
Apparatus and materials are set up as shown in frekuensi 10 Hz.
Switch on the vibrator motor at a frequency of
the diagram with the length of pendulum fixed 10 Hz.
3. Perhatikan gelombang air dengan
at 90.0 cm. menggunakan stroboskop, ukur panjang
gelombang dan rekodkan.
2. Hujung bandul ditarik ke sisi dengan sudut Observe the water waves by using the stroboscope,
measure the wavelength and record it.
sesaran yang kecil dan dilepaskan. 4. Ulangi eksperimen sekurang-kurangnya
empat kali dengan frekuensi motor penggetar:
The pendulum is pulled sideways with a small 20 Hz, 30 Hz, 40 Hz dan 50 Hz.
Repeat the experiment at least four times at the
1UNIT angular displacement and released. frequencies of vibrator motor: 20 Hz, 30 Hz,
40 Hz and 50 Hz.
Prosedur 3. Masa 10 ayunan lengkap, t1 diukur dan
Procedure direkodkan.

The time for 10 complete oscillations, t1, is
measured and recorded.

4. Langkah (3) diulangi untuk mendapatkan t2.
Step (3) is repeated to get t2.
5. Eksperimen diulangi dengan ℓ = 80.0 cm,

70.0.cm, 60.0 cm, 50.0 cm dan 40.0 cm.
The experiment is repeated using ℓ = 80.0 cm,

70.0 cm, 60.0 cm, 50.0 cm and 40.0 cm. _

6. Bacaan direkodkan dan _ t1 + t 2 , T = t
2 10
t=

dan T 2 dikira. _ t1 + t2
2
The rea_dings are tabulated and t = ,

T = t and T2 are calculated.
10

ℓ/cm t /s _ T / s T2 / s2 Frekuensi, f / Hz Panjang
t1 / s t2 / s t /s Frequency, f / Hz
gelombang, λ / cm
10 Wavelength, λ / cm
20
Penjadualan data 90.0 30
Tabulation of the data 80.0 40
70.0 50
60.0
50.0
40.0

T2 / s2 λ / cm

Menganalisis data
Analysis of the data

0 ℓ / cm 0 f / Hz

© Nilam Publication Sdn. Bhd. 8

MODUL • Fizik TINGKATAN 5

Latihan / Exercise 4 Rajah menunjukkan gelombang bunyi yang dihasilkan
daripada satu tala bunyi.
1 Seorang pelajar menggetarkan suatu sistem getaran spring The diagram below shows the sound waves produced by a
sebanyak 4 kali per saat. Panjang gelombang bagi spring
tersebut ialah 0.6 m. Berapakah halaju gelombang menerusi KBAT tuning fork. 4 cm
spring tersebut?
A student makes a spring vibrating system vibrate at 4 times 150 cm UNIT 1
per second. The wavelength of the wave on the spring is
0.6 m. What is the speed of the wave moving along the spring? (a) Berdasarkan rajah, tentukan
Penyelesaian / Solution Based on the diagram, determine

Diberi / Given (i) amplitud / the amplitude
f = 4 Hz, λ = 0.6 m (ii) panjang gelombang / the wavelength
v = f λ (b) Berapakah frekuensi gelombang bunyi sekiranya
= 4 Hz × 0.6 m
= 2.4 m s–1 halaju bunyi adalah 330 m s–1?
What is the frequency of the sound waves if the speed of
2 Gelombang radio merambat dengan halaju sound is 330 m s–1?
3 × 108 m s–1. Berapakah panjang gelombang bagi
gelombang radio FM yang diterima pada 200 MHz bagi Penyelesaian / Solution
mendapatkan siaran radio tersebut?
Radio waves travel at a speed of 3 × 108 m s–1. What is the (a) (i) a= 4 cm (b) v = f λ
wavelength of FM radio waves received at 200 MHz on your 2
radio dial? 330 m s–1 = f × 0.5 m
Penyelesaian / Solution = 2 cm ... f = 660 Hz

Diberi / Given
v = 3 × 108 m s–1, f = 200 MHz (ii) 3λ =150 cm
v = fλ λ =50 cm
(3 × 108 m s–1) = (200 × 106 Hz) × λ
λ = 1.5 m

3 Seutas tali direntangkan di atas lantai. Satu penghujung 5 Rajah di bawah menunjukkan graf sesaran-jarak.
tali tersebut digoyangkan dengan frekuensi 8 Hz. Graf di The diagram below shows the displacement-time graph.
bawah menunjukkan sebahagian pergerakan tali dalam
suatu masa. Sesaran / m
A long rope is stretched out on the floor. One end of the rope Displacement / m
is then shaken at frequency of 8 Hz. The graph below shows
the rope at a particular moment in time. 10

Sesaran / m 0 0.4 0.6 0.8 Masa / s
Displacement / m 0.2 Time / s

0.5 –10

Berdasarkan graf di atas, tentukan

0 0.4 0.8 1.2 1.6 Jarak / m Based on the graph above, determine the
–0.5 Distance / m
(a) amplitud / amplitude

(b) tempoh / period

(c) frekuensi / frequency

Tentukan / Determine Penyelesaian / Solution
(a) amplitud / the amplitude
(b) panjang gelombang / the wavelength (a) a = 10 m
(c) halaju gelombang / the speed (b) T = 0.4 s
Penyelesaian / Solution
(c) f = 1
(a) a = 0.5 m T
(b) λ = 0.8 m
(c) v = f λ 1
= 8 Hz × 0.8 m = 0.4 s
= 6.4 m s–1
=2.5 Hz

9 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Pelembapan dalam sistem ayunan / Damping in an oscillating system
Sistem ayunan / Oscillating system

• Sistem ayunan itu tidak berayun berterusan dengan amplitud yang sama kecuali apabila sistem itu berayun dalam vakum.
The oscillating system does not continue with the same amplitude indefinitely except when the system is oscillating in a vacuum.

Mengalami / Experiences

1UNIT Pelembapan / Damping Resonans / Resonance

• Pelembapan ialah pengurangan amplitud bagi satu sistem ayunan • Resonans berlaku apabila suatu sistem dipaksa
di mana tenaga dilesapkan dalam bentuk tenaga haba. / Damping bergetar pada frekuensi yang sama dengan frekuensi
is the decrease in amplitude of an oscillating system when energy is aslinya yang disebabkan oleh daya luar.
drained out as heat energy. Resonance occurs when a system is made to oscillate
at a frequency equivalent to its natural frequency by
• Amplitud akan semakin berkurang dan menjadi sifar apabila an external force.
ayunan berhenti.
The amplitude will gradually decrease and become zero when the • Sistem yang mengalami resonans ini berayun pada
oscillation stops.
amplitud yang maksimum .
Graf pelembapan / A graph to show damping The resonating system oscillate at its

Amplitud Sesaran maximum amplitude.
Amplitude Displacement
Beberapa kesan Some effects of
a (cm) d (cm) daripada resonans resonance

0 t (s) 0 t (s) • Penala di dalam radio dan televisyen diputarkan
Masa / Time Masa / Time untuk memilih stesen program. Penala dalam litar
diubah sehingga resonans tercapai, pada frekuensi
Dua jenis pelembapan Two types of damping yang dihantar daripada stesen tertentu yang
dipilih. Maka, isyarat elektrik yang kuat terhasil.
Pelembapan luar Pelembapan dalam The tuner in a radio or television enables us to
External damping Internal damping select the programmes. The circuit in the tuner is
Berlaku disebabkan kehilangan adjusted until resonance is achieved at the frequency
tenaga untuk mengatasi daya Berlaku disebabkan kehilangan transmitted by a particular station selected. Hence a
geseran atau rintangan udara. tenaga kerana mampatan dan strong electrical signal is produced.
Caused due to loss of energy regangan molekul di dalam
to overcome frictional force sistem. • Kesan resonans juga membawa kemusnahan.
or air resistance. Caused due to loss of energy Contohnya, jambatan runtuh apabila amplitud
due to the extension and getaran bertambah yang disebabkan oleh
compression of molecules in the resonans, seperti apa yang telah berlaku di
system. Tacoma Narrows Bridge di USA pada 1949.
Fenomena berlaku oleh tindakan angin yang
Menyebabkan / Cause menyebabkan jambatan bergetar dengan amplitud
yang besar.
The effects of resonance can also cause damage.
For example, a bridge can collapse when the
amplitude of its vibration increases as a result of
resonance, such as the Tacoma Narrows Bridge
in USA in 1949. The action of the wind caused the
bridge to vibrate at a large amplitude.

• Amplitud dan tenaga berkurang

Amplitude and energy decreases

• Frekuensi malar / Frequency is constant

© Nilam Publication Sdn. Bhd. 10

MODUL • Fizik TINGKATAN 5

Terminologi Penjelasan
Terminology Explanation

Daya luar Daya luar mesti dikenakan kepada sistem ayunan untuk membolehkan sistem berayun secara berterusan.
External force An external force must be applied to an oscillation system to enable the system to oscillate continuously.

Ayunan paksa Daya luar membekalkan tenaga kepada sistem memaksa sistem berayun.

Forced oscillation The external force which supply energy to the system forces the oscillation.

Frekuensi asli Frekuensi sesuatu sistem yang bergetar sendiri tanpa sebarang daya luar yang bertindak ke atasnya.

Natural frequency The frequency of a system which oscillates freely without the action of an external force.

Maklumat tambahan: UNIT 1
Additional information:

Teknik Menjawab [Format Kertas 2 : Kefahaman / Esei Pendek]
Answering Technique [Paper 2 Format : Comprehension / Short Essay]

Soalan / Question: Jawapan / Answer:
• Bandul B berayun dan memindahkan tenaga kepada bandul-bandul lain.
Bandul B diayunkan. Dengan menggunakan
konsep fizik yang sesuai, terangkan apa akan Pendulum B oscillates and transfers energy to others pendulum.
berlaku kepada ayunan bandul-bandul yang lain
selepas beberapa ketika. • Panjang bandul B = Panjang bandul D
Pendulum B is oscillated. Using appropriate Length of pendulum B = Length of pendulum D
physics concept, explain what will happen to the
state of oscillation of other pendulums after a • Frekuensi bandul B = Frekuensi bandul D
while. Frequency of pendulum B = Frequency of pendulum D

[4 markah / marks] • Bandul D mengalami resonans
Pendulum D undergoes resonance
Kaki retort
Retort stand • Bandul D berayun dengan amplitud maksimum
Pendulum D oscillates with the maximum amplitude
Benang / Thread

F

A D
B

CE

Pemberat Perhatian / Attention:
Loads Satu poin = satu markah

Nota / Note: One point = one mark

(i) Frekuensi ayunan bandul bergantung Boleh diolah lebih daripada 4 poin
kepada panjang bandul. Can present more than 4 points
Ftrequency of pendulum depends on
length of the pendulum. Ketertiban poin tidak penting
The sequence of the points is not important
(ii) Dua bandul dengan panjang yang sama
mempunyai frekuensi dan tempoh yang Poin perlu ringkas, padat, tepat dan bermakna
sama. / Two pendulum of the same length The points should be simple, compact, accurate and meaningful
have the same frequency and period.
11 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Pantulan Gelombang
1.2 Reflection of Waves

Pantulan Gelombang / Reflection of Waves
• Berlaku apabila gelombang tuju terkena pemantul dan mengubah arah perambatannya.

Occurs when an incident wave strikes a reflector and undergoes a change in direction of propagation.
• Berlaku kepada gelombang air, gelombang bunyi, gelombang cahaya dan gelombang elektromagnet.

Occurs to water waves, sound waves, light waves, and electromagnetic waves.

1UNIT

Gelombang tuju Gelombang tuju
Incident wave Incident wave
λ
λ Pemantul satah
λ Plane reflector
Pemantul cekung
ir Concave reflector

Gelombang tuju Gelombang
Incident wave terpantul
Reflected
Pemantul satah wave λ λ λ

Plane reflector Gelombang terpantul Gelombang terpantul
Normal Reflected wave Reflected wave

Normal

i = sudut tuju Ciri-ciri / Characteristics
(sudut di antara gelombang tuju dan normal) • Sudut i = Sudut r
angle of incidence
(the angle between the direction of propagation of the Angle of i = Angle of r

incident wave and the normal) • Panjang gelombang , frekuensi dan halaju
r = sudut pantulan
(sudut di antara gelombang pantulan dan normal) tidak berubah selepas pantulan.
angle of reflection
(the angle between the direction of propagation of the Wavelength , frequency and speed do not change after
reflection.
reflected wave and the normal)
• Arah perambatan gelombang berubah apabila ia dipantulkan.
Gelombang tuju
Incident wave Direction of propagation of wave changes when it is reflected.

Gelombang terpantul
Reflected wave

Hukum pantulan / Laws of reflection

• i = r

• Gelombang tuju, gelombang terpantul dan garis normal terletak pada satah yang sama pada sudut tegak dengan permukaan
pantulan pada titik tuju.
The incident wave, reflected wave and normal lie in the same plane which is perpendicular to the reflecting surface at the point of
incidence.

© Nilam Publication Sdn. Bhd. 12

MODUL • Fizik TINGKATAN 5

PANTULAN GELOMBANG (Mencirikan) / REFLECTION OF WAVES (Characterisation)

Gelombang tuju, Panjang Mempunyai sudut tuju UNIT 1
gelombang terpantul dan gelombang tetap yang sama dengan sudut
garis normal berada pada
Constant pantulan
satah yang sama wavelength Has an angle of incidence

Incident wave, reflected (λ) equal to the angle of
reflection
wave and the normal lie in Ciri-ciri Pantulan
Gelombang Frekuensi tetap
the same plane Constant frequency
Characteristics of
Reflection of Wave (f)

Arah perambatan Halaju tetap
gelombang berubah Constant velocity
Direction of wave
(v)
propagation changed

Eksperimen / Experiment Pantulan gelombang / Reflection of wave

Inferens Sudut pantulan bergantung pada sudut tuju.
Inference The angle of reflection depends on the angle of incidence.
Sudut pantulan bertambah apabila sudut tuju bertambah.
Hipotesis The angle of reflection increases as the angle of incidence increases.
Hypothesis
Untuk mengkaji hubungan antara sudut tuju dan sudut pantulan.
Tujuan To investigate the relationship between the angle of incidence and the angle of reflection.
eksperimen
Aim of the Pemboleh ubah dimanipulasikan / Manipulated variable:
experiment Sudut tuju / Angle of incidence
Pemboleh ubah bergerak balas / Responding variable:
Pemboleh ubah Sudut pantulan / Angle of reflection
Variables Pemboleh ubah dimalarkan / Constant variable:
Kedudukan cermin satah, frekuensi / Position of the plane mirror, frequency
Senarai bahan
dan radas Kotak sinar, cermin satah, plastisin, protraktor dan kertas putih
List of materials Ray box, plane mirror, plasticine, protractor and white paper
and apparatus

13 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Susunan radas iO Cermin satah / Plane mirror
Arrangement of the r Protraktor / Protractor
apparatus Kertas putih / White paper
N
1UNIT Kotak sinar Plastisin / Plasticine
Ray box

Prosedur 1. Garis normal, ON dilukis pada kertas putih.
Procedure A normal line, ON is drawn on the white paper.

2. Dengan menggunakan protraktor, satu sinar cahaya dari kotak sinar ditujukan ke cermin satah pada sudut
tuju, i = 10°.
By using the protractor, a ray of light from the ray box is directed to the plane mirror at angle of incidence,
i = 10°.

3. Dengan menggunakan protraktor, sudut pantulan, r diukur dan direkodkan.

By using the protractor, the angle of reflection ray, r is measured and recorded.

4. Langkah 2 dan 3 diulangi untuk sudut tuju yang lain, i = 20o, 30o, 40o, 50o.

Steps 2 and 3 are repeated for other angles of incidence, i = 20°, 30°, 40°, 50°.

Menjadualkan i / ° 10° 20° 30° 40° 50°
data r/°
Tabulate the data
r/º
Menganalisis data
Analysis the data 0 i/º

© Nilam Publication Sdn. Bhd. 14

MODUL • Fizik TINGKATAN 5

Pembiasan Gelombang
1.3 Refraction of Waves

Pembiasan gelombang / Refraction of waves

Definisi / Definition Ciri-ciri gelombang yang terbias UNIT 1
Characteristics of wave after refraction
Pembiasan ialah perubahan arah gelombang disebabkan oleh perubahan
halaju apabila ia bergerak dari satu medium ke medium lain, yang Gelombang mempunyai frekuensi yang sama tetapi
mempunyai perbezaan ketumpatan optik atau kedalaman. berbeza pada halaju, panjang gelombang dan arah
Refraction is the change in direction of the wave when its speed changes as it perambatan.
moves from one medium to another, which has different optical densities or The wave has the same frequency but different speed,
different depths. wavelength and direction of propagation.

Berlaku kepada / Occur to

Gelombang air, gelombang bunyi, gelombang cahaya dan gelombang elektromagnet
Water waves, sound waves, light waves and electromagnetic waves

Apabila gelombang merambat dari satu medium merentasi sempadan ke medium lain yang berbeza halaju, gelombang yang terbias
akan merambat dalam arah yang berbeza daripada gelombang tuju. / When a wave travelling in one medium crosses the boundary into
another medium where its velocity is different, the refracted wave will move in a different direction from that of the incident wave.

Ciri-ciri gelombang / Characteristics of waves

Keadaan Kawasan dalam Kawasan cetek
Situation In deep water In shallow water

Halaju Lebih laju Lebih perlahan
Speed Faster Slower

Panjang gelombang Lebih panjang Lebih pendek
Wavelength Longer Shorter

Frekuensi Tidak berubah Tidak berubah
Frequency Unchanged Unchanged

Pembiasan gelombang air / Refraction of water waves

Lukiskan gelombang air terbias. / Draw the refracted water waves.

Dalam Cetek Dalam Dalam Cetek Dalam
Deep Shallow Deep Deep Shallow Deep

F

15 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Pembiasan gelombang cahaya / Refraction of light wave

Lukis dan labelkan gelombang cahaya terbias. / Draw and label the refracted light wave.

Sinar tuju i Sinar tuju i
Incident ray Sinar terbias Incident ray r

Udara r Refracted ray Kaca
Air Glass

Kaca Udara
Glass Air

Sinar terbias
Refracted ray

1UNIT Apabila sinar tuju merambat dari medium kurang tumpat ke Apabila sinar tuju merambat dari medium yang lebih tumpat
medium yang lebih tumpat, ia akan dibiaskan mendekati garis ke medium yang kurang tumpat, ia akan dibiaskan menjauhi
normal. garis normal.
When the light ray travels from an optically less dense medium to When the light travels from an optically denser medium to an
an optically denser medium, it bends towards the normal. optically less dense medium, it bends away from the normal.

Maklumat tambahan:
Additional information:

Kemahiran mengkonsepsi secara kuantitatif / Conceptualisation skills quantitatively
Pembiasan gelombang air / Refraction of water waves

v1 v2 (e) Bandingkan / Compare:

λ1 λ2 • d1 lebih besar daripada / larger than / (>) d2
λ2
• λ1 lebih besar daripada / larger than / (>) v2

d2 lebih besar daripada / larger than / (>)

d1 • v1

Blok kaca Air / Water (f) Hubung kaitkan antara kedalaman air, panjang gelombang air
Glass block dan laju gelombang air: / Relate the depth of water, wavelength
and speed of water waves:
(a) Gelombang air mengalami pembiasan apabila merambat
melalui dua sempadan dua kawasan yang berbeza Kedalaman air semakin bertambah, panjang gelombang
kedalaman. / Water waves undergoes refraction when
propagates through two areas of different depth. semakin bertambah , dan laju gelombang semakin

(b) Frekuensi gelombang adalah tetap. bertambah .
Frequency of waves is constant.
As the depth of water increases, the wavelength increases ,
(c) v = fλ
(d) Laju gelombang, v, bergantung pada panjang gelombang, λ. and speed of wave increases .

Speed of waves, v, depends on wavelength, λ.

Formula yang menghubungkaitkan v dan λ untuk kawasan air dalam dan kawasan air cetek
Formula that relates v and λ for area of deep water and area of shallow water

Frekuensi / Frequency :

1. Kawasan dalam / Deep area : f1 = f2

f1 = v1 v1 = v2

l1 l1 l2

2. Kawasan cetek / Shallow area :

f2 = v2

l2

© Nilam Publication Sdn. Bhd. 16

MODUL • Fizik TINGKATAN 5

Teknik Menjawab [Format Kertas 2 : Kefahaman / Esei Pendek]
Answering Technique [Paper 2 Format : Comprehension / Short Essay]

Pembiasan gelombang bunyi pada waktu malam yang sejuk / Refraction of sound wave on cold night time

Soalan / Question: Perhatian / Attention: UNIT 1
Pada waktu malam yang sejuk, bunyi kereta api yang keluar dari Idea tentang suhu lapisan-lapisan udara
terowong kedengaran lebih jelas. Terangkan.
On a cold night, the sound of the train coming out of the tunnel sounds more Idea about the temperature of air layers
clearly. Explain. Idea tentang ketumpatan lapisan-lapisan udara

[4 markah / marks] Idea about the density of air layers
Idea tentang arah perambatan dan fenomena gelombang
Terowong
Tunnel Idea about the direction and phenomenon of waves
Idea tentang perubahan panjang gelombang / laju gelombang

Idea about the change of wavelength / speed of waves
Idea tentang fenomena yang menyebabkan perubahan arah
gelombang yang menghala ke permukaan darat (pantulan
dalam penuh)

Idea about the phenomenon that causes the change of
direction of waves toward the ground surface (total internal
reflection)

Kereta api
Train

Jawapan / Answers:
• Lapisan udara di lapisan bawah lebih sejuk berbanding lapisan atas

Air layer near the ground is colder than the top layer
• Ketumpatan lapisan udara sejuk lebih besar daripada lapisan udara panas

The density of colder air layer is greater than hotter air layer
• Gelombang bunyi terbias menjauhi normal

Sound waves refracted away from normal
• Panjang gelombang di lapisan udara sejuk lebih kecil daripada lapisan udara panas

Wavelength of colder air layer is smaller than hotter air layer
• Laju gelombang di lapisan udara sejuk lebih kecil daripada lapisan udara panas

Wave speed of colder air layer is smaller than hotter air layer
• Gelombang bunyi terbias dan mendekati permukaan darat disebabkan pantulan dalam penuh

Sound waves is refracted and move towards the ground surface due to total internal reflection

Eksperimen / Experiment Pembiasan gelombang cahaya / Refraction of light wave

Inferens Sudut biasan bergantung kepada sudut tuju
Inference The angle of refraction depends on the angle of incidence
Sudut biasan bertambah apabila sudut tuju bertambah
Hipotesis The angle of refraction increases as the angle of incidence increases
Hypothesis Untuk mengkaji hubungan antara sudut tuju dan sudut biasan
To investigate the relationship between the angle of incidence and the angle of refraction
Tujuan
eksperimen 17 © Nilam Publication Sdn. Bhd.
Aim of the
experiment

MODUL • Fizik TINGKATAN 5

Pemboleh ubah Pemboleh ubah dimanipulasikan / Manipulated variable:
Variables Sudut tuju / Angle of incidence
Pemboleh ubah bergerak balas / Responding variable:
Sudut biasan / Angle of refraction
Pemboleh ubah dimalarkan / Constant variable:
Indeks biasan / Refractive index

Senarai bahan Blok kaca, kotak sinar, kertas putih, protraktor, bekalan kuasa
dan radas Glass block, ray box, white paper, protractor, power supply
List of materials
and apparatus Kotak sinar
Ray box
1UNIT
N
Susunan radas i B
Arrangement of the AO C
apparatus
r

DP

Prosedur Q
Procedure
1. Blok kaca diletakkan di atas sehelai kertas putih. Bentuk bongkah kaca dilakarkan di atas kertas putih dan
dilabelkan ABCD. Bongkah kaca dialihkan.
The glass block is placed on a piece of white paper. The outline of the sides of the glass block are traced on the
white paper and labelled as ABCD. The glass block is removed.

2. Garis normal ON dilukis. Dengan menggunakan protraktor, sudut tuju diukur, i = 10°.
Bongkah kaca diletakkan semula di atas lakaran itu. Alur cahaya dari kotak sinar di tujukan pada sudut i itu.
Alur yang terbias dari CD dilukis sebagai PQ. Blok kaca dialihkan semula. Satu garisan OP dilukis.
The normal ON is drawn. By using a protractor, the angle of incidence is measured, i = 10°.

The glass block is placed again on its outline on the paper. A ray of light from the ray box is directed along the
incidence line. The ray emerging from the side CD is drawn as line PQ. The glass block is removed again. The
points O and P are joined by a line and is drawn as line OP.

3. Sudut biasan, r diukur dan direkodkan. / The angle of refraction, r, ray is measured and recorded.

4. Eksperimen diulangi dengan sudut tuju, i = 20°, 30°, 40°, 50°.

The experiment is repeated for angles of incidence i = 20°, 30°, 40°, 50°.

Menjadualkan Sudut tuju / Angle of incidence, i / ° 10° 20° 30° 40° 50°
data Sudut biasan / Angle of refraction, r / °
Tabulation of data

Sudut biasan
Angle of refraction
r/°

Menganalisis data
Analysis of the data

0 Sudut tuju
18 Angle of incidence
i/°

© Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Eksperimen / Experiment Pembiasan gelombang air / Refraction of water wave

Inferens Panjang gelombang air bergantung pada kedalaman air
Inference The wavelength of water waves depends on the depth of water

Hipotesis Apabila kedalaman air meningkat, maka panjang gelombang air meningkat UNIT 1
Hypothesis The wavelength of the water waves increases as the depth of water increases

Tujuan Mengkaji hubungan antara kedalaman air dan panjang gelombang air
eksperimen To investigate the relationship between the depth of water and the wavelength of water waves
Aim of the
experiment Pemboleh ubah dimanipulasikan / Manipulated variable:
Kedalaman air / Depth of water
Pemboleh ubah Pemboleh ubah bergerak balas / Responding variable:
Variables Panjang gelombang / Wavelength
Pemboleh ubah dimalarkan / Constant variable:
Frekuensi / Frequency

Senarai bahan Tangki riak, lampu, motor, bar kayu, bekalan kuasa, kertas putih, protraktor, satah pantulan, plat perspek,
dan radas pembaris 15 cm, stroboskop mekanikal, pembaris meter
List of materials Ripple tank, lamp, motor, wooden bar, power supply, white paper, protractor, plane reflector, perspex plate, 15 cm
and apparatus ruler, mechanical stroboscope, metre rule

Motor Lampu Plat perspeks
Motor Lamp Perspex plate

Air
Water

Susunan radas Stroboskop
Arrangement of the mekanikal
apparatus Mechanical
stroboscope
Bar getaran
Vibrating bar Kertas putih (skrin)
White paper (screen)

19 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

1. Kedalaman air, d, di atas permukaan perspek, diukur dengan menggunakan pembaris 15 cm.
The depth of water, d, over a perspex plate, is measured by using a 15 cm ruler.

2. Bekalan kuasa dihidupkan untuk menggetarkan motor supaya gelombang satah merambat merentasi plat
perspek. Gelombang itu dibekukan dengan menggunakan stroboskop mekanikal. Gelombang itu dilakar
pada skrin. / The power supply is switched on to produce plane waves which propagate across the perspex plate.
The waves are frozen by a mechanical stroboscope. The waves are sketched on the screen.

Prosedur 3. Jarak antara 11 jalur terang berturutan, x, diukur dengan menggunakan pembaris meter dan direkodkan
Procedure
The distance between 11 successive bright bands, x, is measured by the metre ruler and recorded.

4. Panjang gelombang, λ, dikira / The wavelength λ, is calculated, λ= x cm
10

1UNIT 5. Eksperimen diulang 4 kali dengan menambahkan bilangan plat perspek untuk mengubah kedalaman air di

atas plat perspek. / The experiment is repeated 4 times by increasing the number of perspex plates to change

the depth of the water across the plate.

Menjadualkan Kedalaman air / Depth of water, d / cm
data Panjang gelombang / Wavelength, λ / cm
Tabulation of data
Panjang gelombang
Wavelength
λ / cm

Menganalisis data
Analysis of the data

Kedalaman air

0 Depth of water
d / cm

Latihan / Exercise

1 Rajah menunjukkan gelombang satah air bergerak dari kawasan P ke kawasan Q yang mempunyai kedalaman berbeza.
The diagram shows a plane water wave moving from one area P to another area Q of different depths.

KBAT PQ

Halaju gelombang air di kawasan P ialah 18 cm s–1. Berapakah halaju
gelombang air di kawasan Q?
The speed of the water wave in area P is 18 cm s–1. What is the speed of the water
wave in area Q?

12 cm 12 cm

Penyelesaian / Solution

PQ Frekuensi gelombang di kawasan Q adalah bersamaan dengan
frekuensi gelombang di kawasan P.
Frequency of wave in region Q is the same as the frequency of wave in
region P.

4λ = 12 cm 8λ = 12 cm 8λQ = 12 cm Oleh itu, / Hence, vQ = f λQ
vQ = (6 Hz) × 1.5 cm
Kedalaman P: / Deep region P: λQ = 12 cm = 9.0 cm s–1
8

4λp= 12 cm vp = f λp = 1.5 cm
18 cm s–1 = f (3 cm)
λp = 12 cm \ f = 6 Hz
4

λp = 3 cm

© Nilam Publication Sdn. Bhd. 20

MODUL • Fizik TINGKATAN 5

Belauan Gelombang
1.4 Diffraction of Waves

Pembelauan gelombang / Diffraction of waves

Definisi / Definition Selepas belauan berlaku: / After diffraction has occured:

Penyebaran gelombang apabila gelombang Dimalarkan / Constant Berubah / Change
melalui celahan atau halangan.
The spreading of waves as they pass through • Panjang gelombang, λ • Amplitud berkurang
an aperture or obstacle. Wavelength, λ Amplitude decreases

• Frekuensi, f • Corak gelombang UNIT 1
Frequency, f Pattern of the wave

• Halaju,v • Tenaga berkurang
Speed, v Energy decreases

Gelombang air lebih terbelau jika: (ii) Panjang gelombang lebih panjang / Wavelength is longer
Waves are diffracted more if: Halangan panjang / Long obstacle
(i) Celahan sempit / Slit is narrow

Size celahan ≤ λ / Size of gap ≤ λ

Saiz celahan > λ / Size of gap > λ Halangan pendek / Short obstacle Video

Pembelauan Gelombang
Diffraction of Waves

https://goo.gl/eHTMDA

Faktor-faktor mempengaruhi kesan belauan gelombang: / Factors affecting the effects of diffraction of waves:

Faktor Perubahan ke atas faktor Kesan belauan
Factor Changes on factors Effects of diffraction

Saiz celah Kecil / Small Jelas / Clear
Size of slit Besar / Large Kurang jelas / Less clear
Kecil / Small
Saiz halangan Besar / Large Jelas / Clear
Size of obstacle Kurang jelas / Less clear

Frekuensi Rendah / Low Jelas / Clear
Frequency Tinggi / High Kurang jelas / Less clear
Pendek / Short Kurang jelas / Less clear
Panjang gelombang
Wavelength Panjang / Long Jelas / Clear

21 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Rajah / Diagram: Pendengar Dinding
Listener Wall
• Gelombang bunyi mempunyai gelombang yang panjang.
Sound wave has a long wavelength. Radio
Radio
• Belauan gelombang bunyi menyebabkan bunyi masih boleh didengar di penjuru dinding
bangunan.
Diffraction of sound waves enables sound to ‘go around a corner’.

1UNIT Eksperimen / Experiment Pembelauan gelombang air / Diffraction of water waves

Inferens Sudut bengkokan gelombang air bergantung kepada saiz celah
Inference The angle of bending of the waves depends on the size of the slit

Hipotesis Sudut bengkokan gelombang air meningkat apabila saiz celah berkurang
Hypothesis The angle of bending of the waves increases as the size of slit decreases
Tujuan
eksperimen Mengkaji hubungan antara sudut bengkokan gelombang air dan saiz celah
Aim of the To investigate the relationship between the angle of bending of the waves and the size of the slit
experiment
Pemboleh ubah dimanipulasikan / Manipulated variable:
Pemboleh ubah Saiz celah, a, / Size of slit, a
Variables
Pemboleh ubah bergerak balas / Responding variable:
Senarai bahan Sudut bengkokan gelombang air, θ° / Angle of bending of the water waves, θ°
dan radas
List of materials Pemboleh ubah dimalarkan / Constant variable:
and apparatus Frekuensi penggetar / Frequency of vibrator

Tangki riak, lampu, motor, bar kayu, bekalan kuasa, kertas putih, dua batang bar besi, pembaris meter,
protraktor dan stroboskop mekanikal
Ripple tank, lamp, motor, wooden bar, power supply, white paper, two pieces metal bar, metre rule, protractor and
mechanical stroboscope

Motor Lampu Bar logam
Motor Lamp Metal bar

Bar getaran Air Celahan
Vibrating bar Water Aperture slit

Susunan radas Stroboskop
Arrangement of the mekanikal
apparatus Mechanical
stroboscope

Kertas putih (skrin)
White paper (screen)

© Nilam Publication Sdn. Bhd. 22

MODUL • Fizik TINGKATAN 5

Prosedur 1. Dengan menggunakan pembaris meter, lebar celah diukur, a = 0.5 cm.
Procedure
By using a metre rule , the width of the slit is measured, a = 0.5 cm.

Bekalan kuasa dihidupkan. Gelombang dibekukan dengan menggunakan stroboskop mekanikal.Gelombang
dilakarkan pada skrin.
The power supply is switched on. The waves are freeze by a mechanical stroboscope. The waves are sketched on
the screen.

2. Dengan menggunakan protraktor, sudut bengkokan, θ diukur.
By using a protractor, the angle of bent, θ is measured.

3. Eksperimen diulang dengan menggunakan lebar celah, a = 1.0 cm, 1.5 cm, 2.0 cm dan 2.5 cm.
The experiment is repeated for width of slit, a = 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm.

Menjadualkan Saiz celah / Size of aperture, a / cm 0.5 1.0 1.5 2.0 2.5 UNIT 1
data Sudut bengkokan gelombang air
Tabulation of data Angle of bending of water waves, θ / °

Angle of bending of water wavesθ / °

Menganalisis data
Analysis of the data

Saiz celah
0 Size of aperture

a / cm

Eksperimen / Experiment Pembelauan gelombang cahaya / Diffraction of light wave

Inferens Lebar pinggir cerah di tengah bergantung kepada saiz celah
Inference The width of the middle bright fringe depends on the size of the slit

Hipotesis Lebar pinggir cerah di tengah bertambah apabila saiz celah berkurang
Hypothesis The width of the middle bright fringe increases as the size of the slit decreases
Tujuan
eksperimen Mengkaji hubungan lebar pinggir cerah di tengah dengan saiz celah
Aim of the To investigate the relationship between the width of the middle bright fringe and the size of the slit
experiment
Pemboleh ubah dimanipulasikan / Manipulated variable:
Pemboleh ubah Saiz celah / Size of slit
Variables Pemboleh ubah bergerak balas / Responding variable:
Lebar pinggir cerah di tengah / The width of the middle bright fringe
Senarai bahan Pemboleh ubah dimalarkan / Constant variable:
dan radas Cahaya monokromatik (cahaya dengan satu panjang gelombang sahaja)
List of materials Monochromatic light (light of one wavelength only)
and apparatus
Sumber cahaya monokromatik, slaid celah tunggal, pembaris meter
Monochromatic light source, single slit slide, metre rule

23 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Sumber cahaya laser Slaid satu celah
Laser light source Single slit slide

Susunan radas
Arrangement of the
apparatus

x

1UNIT Skrin
Screen
Pinggir tengah cerah
Middle bright fringe

Prosedur 1. Lebar celah direkodkan, a = 0.2 mm. Cahaya dari sumber ditujukan ke arah celahan.
Procedure The width of the slit is recorded, a = 0.2 mm. The light beam from the source is directed towards the slit.

2. Dengan menggunakan pembaris meter, lebar pinggir cahaya di tengah, x, diukur dan direkodkan.
By using a metre rule, the width of the middle bright fringe, x is measured and recorded.

3. Eksperimen diulangi dengan menggunakan lebar celah, a = 0.4 mm, 0.6 mm, 0.8 mm dan 1.0 mm.
The experiment is repeated for widths of slit, a = 0.4 mm, 0.6 mm, 0.8 mm and 1.0 mm.

Menjadualkan Lebar celah / Width of slit, a / mm 0.2 0.4 0.6 0.8 1.0
data
Tabulate the data Lebar pinggir tengah cerah
Width of middle bright fringe, x / cm

Lebar pinggir tengah cerah
Width of middle bright fringe
x / cm

Menganalisis data
Analysis the data

0 Lebar celah
Width of slit
a / mm

Maklumat tambahan:
Additional information:

© Nilam Publication Sdn. Bhd. 24

PEMBIASAN DAN PEMBELAUAN (Membanding & Membezakan)
REFRACTION AND DIFFRACTION (Comparing & Contrasting)

Gelombang Tenaga berubah Gelombang
merambat melalui Energy is changing merambat melalui
medium yang berbeza
f malar celahan atau halangan
ketumpatan optikal atau Constant f
Waves propagate through
berbeza kedalaman Corak gelombang the slit or obstacles
Waves propagating through berubah
mediums of different optical
densities or optical depths Wave pattern is
changing
v berubah v malar
mengikut kedalaman medium Perubahan arah Constant v
gelombang
atau ketumpatan optikal
medium Changes in wave
direction
v varies with the
depth of the medium or optical

density of the medium
MODUL • Fizik TINGKATAN 5
25 © Nilam Publication Sdn. Bhd.Pembiasan Pembelauan Amplitud
Gelombang Gelombang
Refraction of Diffraction of berkurang

Wave Wave Amplitude
decreases
Pembengkokan
λ berubah gelombang λ malar
Bending Constant λ
mengikut kedalaman medium of wave
atau ketumpatan optikal
medium

λ varies with the
depth of the medium or optical

density of the medium

Penyebaran
gelombang
Spreading

of wave

1UNIT

MODUL • Fizik TINGKATAN 5

Latihan / Exercise
1 Rajah menunjukkan gelombang satah air mendekati satu celah sempit.

The diagram shows plane water waves approaching a narrow slit.

1UNIT Pembengkokan gelombang meningkat apabila
The bending of the waves increases when
A saiz celah bertambah / the size of slit increases
B frekuensi gelombang bertambah / the frequency of the wave increases
C panjang gelombang bertambah / the wavelength increases

2 Rajah menunjukkan corak yang dihasilkan di atas skrin apabila cahaya monokromatik melalui celahan.

The diagram shows the pattern formed on a screen when a monochromatic light is passed through a slit.

G CG C GC G

KBAT



Antara rajah berikut, yang manakah terhasil apabila saiz celah dikurangkan?
Which of the following diagrams occurs when the size of the slit is decreased?

A C

B D

3 Antara rajah berikut, yang manakah menunjukkan corak belauan cahaya bagi gelombang cahaya apabila cahaya monokromatik
melalui lubang pin yang halus? / Which of the following diagrams shows the patterns of diffraction of light waves when a
monochoromatic light passes through a small pin hole?

A B C D

Interferens Gelombang
1.5 Interference of Waves

Maksud interferens Kesan superposisi dua gelombang yang koheren.
Meaning of The effect of superposition of two coherent waves.
interference

Maksud gelombang Sumber yang menghasilkan gelombang dengan frekuensi yang sama, panjang gelombang yang sama dan
yang koheren dalam fasa yang sama (sefasa).
Meaning coherent Sources which produce waves with the same frequency, same wavelength and are in the same phase.
waves
Apabila dua gelombang merambat serentak dan bertindih pada satu titik, sesaran paduan pada titik itu adalah
Prinsip superposisi sama dengan hasil tambah sesaran gelombang itu secara individu.
The principle of When two waves move simultaneously and coincide at a point, the displacement at that point is equal to the sum of
superposition the displacement of the individual waves.

© Nilam Publication Sdn. Bhd. 26

MODUL • Fizik TINGKATAN 5

Kesan daripada superposisi dua puncak gelombang atau dua lembangan gelombang dari sumber

yang koheren untuk menghasilkan amplitud yang maksimum . / The effect of the superposition of two
wave crests or two waves troughs of coherent source to generate the maximum amplitude.

Interferens Gelombang paduan = 2a Gelombang paduan = 2a
membina Resulting wave = 2a Resulting wave = 2a
Constructive
interference aa 2a

Interferens a a 2a
memusnah
Destructive Kesan daripada superposisi puncak gelombang dan lembangan gelombang dari sumber yang koheren untuk UNIT 1
interference
menghasilkan amplitud sifar . / The effect of superposition of wave crest and wave trough from a
amplitude
coherent source to produce a zero

Gelombang paduan = 0
Resulting wave = 0

Antinod Titik di mana interferens membina terbentuk
Antinode A point where constructive interference occurs

Nod Titik di mana interferens memusnah terbentuk
Node A point where destructive interference occurs

Rajah: / Diagram: Formula Interferens Young: λ= ax
Young’s Interference Formula: D
Garis antinod
(Interferens Garis nod x
membina) (Interferens
Antinodal line memusnah)
(Constructive Nodal line
interference) (Destructive
interference)

D

Puncak
Crest

S1 S2 Puncak
Crest
Lembangan
Lembangan Trough a
Trough

S1 S2 a = Jarak antara dua sumber koheren
Distance between two coherent sources
Sumber gelombang
Waves sources =Panjang gelombang / Wavelength
x = Jarak antara dua garis nod (atau garis antinod) yang
gelombang amplitud sifar / zero amplitude waves
gelombang puncak maksimum / maximum crest waves berturutan / Distance between two consecutive nodal
gelombang lembangan maksimum / maximum trough waves lines (or antinodal lines)
D = Jarak berserenjang dari dua sumber ke titik pengukuran x
Perpendicular distance from the two sources to the point
of measurement of x

27 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Eksperimen / Experiment Interferens gelombang air / Interference of water wave

Inferens Jarak antara dua garis nod yang berturutan bergantung kepada jarak antara dua sumber koheren.
Inference The distance between two consecutive nodal lines depends on the distance between two coherent sources.

Hipotesis Jarak antara dua garis nod berturutan bertambah apabila jarak antara dua sumber koheren berkurang.
Hypothesis The distance between two consecutive nodal lines increases as the distance between two coherent sources
decreases.

1UNIT Tujuan Mengkaji hubungan antara jarak antara dua sumber koheren, a, dan jarak antara dua garis nod yang
eksperimen berturutan, x.
Aim of the To investigate the relationship between the distance of two coherent sources, a, and the distance of two consecutive
experiment nodal lines, x.

Pemboleh ubah Pemboleh ubah dimanipulasikan / Manipulated variable:
Variables Jarak antara dua sumber koheren, a / The distance between two coherent sources, a
Pemboleh ubah bergerak balas / Responding variable:
Jarak antara dua garis nod yang berturutan, x / The distance between two consecutive nodal lines, x
Pemboleh ubah dimalarkan / Constant variable:
Frekuensi penggetar, panjang gelombang / Frequency of vibrator, the wavelength
Jarak antara sumber (pencelup) dan kedudukan di mana x diukur.
Distance between sources and the position where x is measured.

Senarai bahan Tangki riak, lampu, motor, kayu bar, bekalan kuasa, kertas putih, pencelup sfera, pembaris meter dan
dan radas stroboskop mekanik
List of materials Ripple tank, lamp, motor, wooden bar, power supply, white paper, spherical dippers, metre rule and mechanical
and apparatus stroboscope

Lampu / Lamp

Motor Air Pencelup Tangki riak
Motor Water Dipper Ripple tank

Susunan radas Bar getaran Stroboskop mekanikal
Arrangement of the Vibrating bar Mechanical stroboscope
apparatus Bayang corak interferens
Shadow of interference patterns
Kertas putih (skrin)
White paper (screen)

© Nilam Publication Sdn. Bhd. 28

MODUL • Fizik TINGKATAN 5

Prosedur 1. Dengan menggunakan pembaris meter, jarak antara dua pencelup diukur, a = 2.0 cm.
Procedure By using a metre rule, the distance between two dippers is measured, a = 2.0 cm.

2. Bekalan kuasa dihidupkan untuk menghasilkan dua gelombang membulat dari pencelup. Gelombang dibekukan UNIT 1
dengan menggunakan stroboskop mekanikal. Gelombang dilakarkan pada skrin.
The power supply is switched on to produce two circular waves from the dippers. The waves are frozen by a
mechanical stroboscope. The waves are sketched on the screen.

3. Dengan menggunakan pembaris meter, jarak antara dua garis nod yang berturutan, x, diukur
dan direkodkan

By using a metre rule, the distance between two consecutive nodal lines, x, is measured and recorded.

4. Eksperimen diulangi pada jarak yang berbeza antara dua pencelup, a = 4.0 cm, 6.0 cm, 8.0 cm
dan 10.0 cm. / The experiment is repeated with different values of the distance between two dippers,

a = 4.0 cm, 6.0 cm, 8.0 cm and 10.0 cm.

Menjadualkan a / cm 2.0 4.0 6.0 8.0 10.0

data x / cm

Tabulation of data

Menganalisis data Jarak antara dua garis nod berturutan
Analysis of the data Distance between two consecutive nodal lines
x / cm
Jarak antara dua pencelup
0 Distance between the two dippers
a / cm

Latihan / Exercise

1 Dalam satu eksperimen untuk mengkaji corak interferens gelombang air, jarak antara dua pencelup sfera ialah 2.5 cm dan jarak
antara dua garis antinod berturutan pada titik pengukuran ialah 5.0 cm. Berapakah panjang gelombang bagi air jika jarak dari
dua pencelup ke titik pengukuran itu ialah 10.0 cm?
In an experiment to investigate the interference pattern of water waves, the distance between two spherical dippers is 2.5 cm and the
distance between two consecutive antinodal lines is 5.0 cm. What is the wavelength of the water waves if the distance from the two
dippers to the point of measurement is 10.0 cm?

Penyelesaian
Solution

Diberi / Given a = 2.5 cm, x = 5.0 cm, D = 10.0 cm

λ = ax
D

= 2.5 cm × 5.0 cm Video
10.0 cm

= 1.25 cm

Interferens Gelombang
Interference of Waves

https://goo.gl/7dS7Pf

29 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Eksperimen / Experiment Interferens gelombang cahaya / Interference of light wave

1UNIT Inferens Jarak antara dua pinggir cerah yang berturutan bergantung kepada panjang gelombang cahaya
Inference The distance between two consecutive bright fringes depends on the wavelength of the light waves.

Hipotesis Jarak antara dua pinggir cerah yang berturutan bertambah apabila panjang gelombang cahaya bertambah
Hypothesis The distance between two consecutive bright fringes increases when the wavelength of the light waves increases.
Tujuan
eksperimen Mengkaji hubungan antara panjang gelombang cahaya dan jarak antara dua pinggir cerah yang berturutan
Aim of the To investigate the relationship between the wavelength of light waves and the distance between two consecutive
experiment bright fringes.

Pemboleh ubah Pemboleh ubah dimanipulasikan / Manipulated variable:
Variables Panjang gelombang cahaya laser, λ
The wavelength of the laser light waves, λ
Senarai bahan Pemboleh ubah bergerak balas / Responding variable:
dan radas Jarak antara dua pinggir cerah berturutan, x
List of apparatus The distance between two consecutive bright fringes, x
and materials Pemboleh ubah dimalarkan / Constant variable:
Jarak pemisahan antara celah, a, dan jarak antara dwicelah dan skrin, D
Slit separation, a, and the distance between double slit and screen, D

Sumber cahaya laser, skrin, dwicelah, pembaris meter dan pembaris 15 cm
Laser light source, screen, double slit, metre ruler and 15 cm ruler

Skrin
Screen

Susunan radas Sumber cahaya laser a Kawasan interferens
Arrangement of the Laser light source Interference area
apparatus Slit dwicelah
Double slit
3.0 m Corak pinggir interferens
D Interference fringe pattern

1. Sumber cahaya laser dihidupkan. Panjang gelombang = λ,

The laser light source is switched on. Wavelength = λ,

2. Corak interferens terbentuk di atas skrin diperhatikan dan dilakarkan.

The interference pattern formed on the screen is observed and drawn.

Prosedur 3. Dengan menggunakan pembaris 15 cm, jarak merentasi 6 pinggir cerah yang berturutan, L diukur dan
Procedure
direkodkan. / By using a 15 cm ruler, the distance across 6 consecutive bright fringes, L is measured and recorded.

4. Jarak antara dua pinggir cerah yang berturutan dikira, x = L cm
5
L cm
The distance between two consecutive bright fringes, x = 5 is calculated.

5. Eksperimen diulangi dengan sumber laser yang berbeza supaya panjang gelombang = λ2, λ3, λ4, λ5.
The experiment is repeated with different laser light sources so that the wavelength = λ2, λ3, λ4 , λ5.

© Nilam Publication Sdn. Bhd. 30

MODUL • Fizik TINGKATAN 5

Menjadualkan λ/m
data x/m
Tabulation of data

Menganalisis data x/m
Analysis of the data 0

λ/m

UNIT 1

Latihan / Exercise

1 Dalam eksperimen interferens cahaya yang menggunakan cahaya hijau dengan panjang gelombang
5 × 10–7 m, jarak antara dua pinggir cerah yang terbentuk pada skrin ialah 0.4 mm. Apabila eksperimen diulangi dengan
menggunakan cahaya monokromatik, L, jarak antara dua pinggir cerah yang terbentuk ialah 0.48 mm. Berapakah panjang

KBAT gelombang cahaya L? / In an experiment of light interference using green light of wavelength 5 × 10–7 m, two consecutive bright
fringes formed on the screen are 0.4 mm apart. When the experiment is repeated using monochromatic light, L, two consecutive bright

fringes formed are 0.48 mm apart. What is the wavelength of light L?
Penyelesaian / Solution

Diberi λHijau = 5 × 10–7 m, Given λGreen = 5 × 10–7 m,

xHijau = 4 × 10–4 m, xL = 4.8 × 10–4 m xGreen = 4 × 10–4 m, xL = 4.8 × 10–4 m
ax a
Dengan menggunakan λ = D , Using λ = D ,

λHijau = ( a )(xHijau ) ("a" dan D adalah malar di sini), λGreen = ( a )(xGreen ) (here, "a" and D are constants),
D D

\( a )= λHijau (i) \( a )= λGreen (i)
D xHijau (ii) D xGreen (ii)

Tetapi λL = ( a )(xL) But λL = ( a )(xL)
D D
λL λL
\ ( a ) = xL \ ( a ) = xL
D D

Pers. (i) = Pers. (ii); Equation (i) = Equation (ii);

\ λHijau = λL \ λGreen = λL
xHijau xL xGreen xL

\ λL = ( λHijau )(xL) \ λL = ( λGreen )(xL)
xHijau xGreen

= (5 × 10–7 m) × (4.8 × 10–4 m) =((45 ×× 10–7 m) × (4.8 × 10–4 m)
(4 × 10–4 m) 10–4 m)

= 6.0 × 10–7 m = 6.0 × 10–7 m

31 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

2 Rajah menunjukkan corak pinggir yang terbentuk dalam eksperimen dwicelah apabila cahaya monokromatik digunakan. Jarak
antara celah ialah 0.5 mm dan skrin adalah sejauh 3.0 m dari dwicelah itu.
The diagram shows the fringe pattern obtained in a double slit experiment when a monochromatic light is used. The double slits are

KBAT 0.5 mm apart and the screen is 3.0 m away from the double slits.

1.4 cm
Berapakah panjang gelombang cahaya monokromatik itu? / What is the wavelength of the monochromatic light?

1UNIT Penyelesaian
Solution

Diberi / Given: λ = ax
a = 0.5 mm = 0.5 × 10–3 m D
D = 3.0 m
= (0.5 × 10–3 m) × (0.28 × 10–2 m)
3.0 m
x = 1.4 cm
5 = 4.67 × 10–7 m

= 0.28 cm
= 0.28 × 10–2 m

Eksperimen / Experiment Interferens gelombang bunyi / Interference of sound waves

Inferens Jarak antara dua kawasan bunyi kuat berturutan bergantung kepada jarak antara pendengar dan dua pembesar
Inference suara. / The distance between two successive loud regions depends on the distance between the listener and the two
loudspeakers.
Hipotesis
Hypothesis Jarak antara dua kawasan bunyi kuat berturutan bertambah apabila jarak antara pendengar dan dua pembesar
suara bertambah. / The distance between two successive loud regions increases as the distance between the listener
Tujuan and the two loudspeakers increases.
eksperimen
Aim of the Mengkaji hubungan antara jarak antara pendengar dari dua pembesar suara dengan jarak antara dua kawasan
experiment bunyi kuat yang berturutan. / To investigate the relationship between the distance between the listener and the two
loudspeakers, and the distance between two successive loud regions.
Pemboleh ubah
Variables Pemboleh ubah dimanipulasikan / Manipulated variable:
Jarak antara pendengar dan dua pembesar suara, D.
The distance between the listener and the two loudspeakers, D.

Pemboleh ubah bergerak balas / Responding variable:
Jarak antara dua kawasan bunyi kuat yang berturutan, x
The distance between two successive loud regions, x

Pemboleh ubah dimalarkan / Constant variable:
Panjang gelombang bagi gelombang bunyi / Jarak antara dua pembesar suara
The wavelength of sound waves / Distance between the two loudspeakers

© Nilam Publication Sdn. Bhd. 32

MODUL • Fizik TINGKATAN 5

Senarai bahan Dua pembesar suara, penjana frekuensi-audio, dawai penyambung dan pembaris meter, padang atau gelanggang
dan radas terbuka.
List of materials Two loudspeakers, audio-frequency generator, connection wires and metre ruler, open court or field.
and apparatus

Penjana berfrekuensi audio Pembesar suara
Audio-frequency generator Loudspeaker

Pembesar suara
Loudspeaker

Susunan radas a=1m
Arrangement of the
apparatus UNIT 1

Pendengar D=2m
Listener

Prosedur 1. Dua pembesar suara dilaraskan pada jarak 1 m antara kedua-duanya.
Procedure The two loudspeakers are adjusted at 1 m apart.

2. Dengan menggunakan pembaris meter, jarak antara pendengar dan pembesar suara,
. D = 2.0 m, diukur.

Penjana berfrekuensi audio dihidupkan. Eksperimen ini dijalankan di gelanggang terbuka supaya tiada
gema.
By using a metre rule, the distance between the listener and the loudspeaker, D = 2.0 m, is measured.
The audio-frequency generator is switched on. This experiment is conducted in an open court so that there is no echo.
3. Pendengar berjalan selari dengan sisi depan meja dan jarak antara dua kawasan bunyi kuat
berturutan, x diukur dan direkodkan. / The listener walks in a straight path parallel to the front edge of

the table and the distance between two successive loud regions, x, is measured and recorded.

4. Eksperimen diulangi pada jarak yang berbeza antara pendengar dengan pembesar suara,
D = 4.0 m, 6.0 m, 8.0 m dan 10.0 m.

The experiment is repeated with different distances between the listener and the loudspeakers,

D = 4.0 m, 6.0 m, 8.0 m and 10.0 m.

Menjadualkan D/m 2.0 4.0 6.0 8.0 10.0

data

Tabulation of data x/m

x/m

Menganalisis data
Analysis of the data

0 D/m

33 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Latihan / Exercise

1 Rajah di bawah menunjukkan dua pembesar suara disambungkan kepada satu penjana isyarat audio untuk menghasilkan dua set
gelombang bunyi yang koheren. Penjana isyarat audio dihidupkan. Seorang pelajar yang berjalan di sepanjang garis lurus XY
pada jarak 5.0 m dari pembesar suara mendengar satu siri bunyi kuat dan lemah yang berselang-seli di titik P, Q, R, S dan T.
The diagram below shows the two speakers connected to an audio signal generator to generate two sets of sound waves that are
coherent. Audio signal generator is switched on. A student who walked along the straight line XY at a distance of 5.0 m from the
speaker hear a series of alternating loud and soft sounds at points P, Q, R, S and T.

Penjana
isyarat audio
Audio signal

generator

1UNIT Pembesar suara Pembesar suara
Loudspeaker Loudspeaker

2.0 m

5.0 m

XY
P QR S T

(a) Dua pembesar suara itu dipisahkan dengan jarak 2.0 m. Gelombang bunyi yang dihasilkan mempunyai frekuensi
1 200 Hz dan laju 300 m s–1. / Two speakers are separated by a distance of 2.0 m. The sound waves produced has a frequency
of 1200 Hz and at speed of 300 m s–1.

(i) Hitungkan panjang gelombang bagi gelombang bunyi.
Calculate the wavelength of the sound waves.

(ii) Hitungkan jarak di antara dua bunyi kuat yang berturutan.
Calculate the distance between two consecutive strong sounds.
(b) Menggunakan konsep interferens gelombang dan konsep fizik lain yang sesuai, terangkan bagaimana jarak di antara dua
bunyi kuat yang berturutan berkurang jika eksperimen ini dijalankan pada waktu malam.
Using the concept of wave interference and other appropriate physics concept, explain how the distance between two consecutive
KBAT loud noise is reduced if this experiment is carried out at night.
Penyelesaian
Solution

(a) (i) v = fλ (b) • Waktu malam, suhu udara menurun. [M1]
At night, temperatures drop.
300 = 1 200 x λ • Ketumpatan udara bertambah. [M2]
Density of air increases.
λ = 0.25 m • Panjang gelombang bunyi berkurang. [M3]
The wavelength of sound wave decreases.
(ii) λ= ax • x berkadar langsung dengan λ. [M4]
D x is directly proportional to λ.

0.25 = (2.0)x
5.0

\ x = 0.625 m

© Nilam Publication Sdn. Bhd. 34

MODUL • Fizik TINGKATAN 5

Ciri-ciri interferens gelombang / Characteristics of interference of waves

Bagaimana a, λ, f dan D mempengaruhi x?
How a, λ, f and D affect x?

Lakarkan graf Jarak di antara dua sumber koheren, a
Sketch the graph The distance between the two coherent sources, a
• Jarak di antara dua garisan nod atau antinod yang berturutan, x, berkadar songsang
x
dengan jarak di antara dua sumber, a.
The distance between the two successive nodes lines or antinodes lines, x, is inversely
proportional to the distance between two sources, a.

x a 1
a

• Semakin bertambah a, semakin berkurang x. UNIT 1
As a increases, x decreases.

a • Pemboleh ubah / Variables :
Dimanipulasikan / Manipulated : a
Bergerak balas / Responding : x
Dimalarkan / Constant : λ atau f dan D / λ or f and D

Lakarkan graf Panjang gelombang, λ
Sketch the graph
Wavelength, λ
x • Jarak di antara dua garisan antinod atau garis nod yang berturutan, x berkadar langsung

dengan panjang gelombang dan berkadar songsang dengan frekuensi.
The distance between the two successive antinodes lines or nodes lines, x is directly
proportional to the wavelength and inversely proportional to the frequency.

xa λ xa 1
f

• Semakin bertambah λ, semakin bertambah x.
As λ increases , x increases .

λ • Semakin bertambah frekuensi, f, semakin berkurang x.
As frequency, f increases , x decreases .

• Pemboleh ubah / Variables :
Dimanipulasikan / Manipulated : λ atau f / λ or f
Bergerak balas / Responding : x
Dimalarkan / Constant : a dan D / a and D

Lakarkan graf Jarak, D
Sketch the graph Distance, D
• Jarak di antara dua garis nod atau antinod yang berturutan berkadar langsung dengan
x
jarak dari mana x diukur, D.
The distance between the two consecutive lines nodes lines or antinodes lines is directly
proportional to the distance from where x is measured, D.

xa D

• Semakin bertambah D, semakin bertambah x.
As D increases , x increases .

D • Pemboleh ubah / Variables : Maklumat tambahan:
Dimanipulasikan / Manipulated : D Additional information:
Bergerak balas / Responding : x
Dimalarkan / Constant : λ atau f dan a / λ or f and a

35 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Gelombang Bunyi
1.6 Sound Waves

Aplikasi gelombang bunyi / Applications of sound waves Ciri-ciri gelombang bunyi / Characteristics of sound waves

1UNIT • Kelawar bergerak waktu malam dengan mengeluarkan • Gelombang bunyi ialah gelombang membujur.
gelombang bunyi yang tinggi kelangsingannya dalam Sound waves are longitudinal waves.
julat ultrasonik. / Bats can navigate in darkness by emitting
high-pitch sound waves in ultrasonic range. • Gelombang bunyi diklasifikasikan sebagai gelombang
mekanikal. / Sound waves are classified as mechanical waves.
• Dolphin menggunakan frekuensi ultrasonik 150 kHz
untuk komunikasi dan pandu arah. • Memerlukan medium (bahantara) untuk merambat.
Dolphin used ultrasonic frequency of 150 kHz for Require a medium to propagate.
communication and navigation.
• Dihasilkan oleh getaran seperti getaran kon pembesar suara, tali
• Gema ultrasonik digunakan untuk mengesan retakan gitar dan getaran tala bunyi.
atau kelemahan di dalam bongkah besi dan mengukur Produced by vibration such as vibration of the cone-shaped
kedalaman laut. diaphragm of a loudspeaker, guitar strings and tuning fork.
Ultrasonic echoes are used to detect cracks or flaws inside a
metal block and also to measure the depth of the sea. • Tidak boleh merambat dalam vakum.
Cannot travel in a vacuum.
• Gelombang ultrasonik menghasilkan imej organ-organ
dalaman yang mudah disiasat dan merupakan teknik yang • Bunyi adalah satu bentuk tenaga yang merambat sebagai
mudah untuk prosedur diagnosis. Ianya lebih selamat gelombang. / Sound is a form of energy propagated as waves.
daripada X-ray. / Ultrasonic imaging is a simple structural
and safer technique for diagnostic procedure, compared to • Julat frekuensi audio adalah 20 Hz – 20 kHz. Frekuensi yang
X-ray. It enables doctors to evaluate the structural aspects of kurang daripada 20 Hz dipanggil infrasonik, frekuensi yang
the internal organs. lebih tinggi daripada 20 kHz dipanggil ultrasonik.
Can be generated at a wide range of frequency between 20 Hz –
• Gelombang ultrasonik yang mempunyai keamatan yang 20 kHz. Below 20 Hz it is called infrasound; above 20 kHz it is
tinggi boleh digunakan untuk memecahkan ketulan called ultrasound.
batu dalam ginjal kerana ia: / High intensity ultrasonic
shockwaves can be used to break stones in kidneys because it: • Mampatan dan renggangan boleh dihasilkan jika terdapat bahan
yang mana boleh dimampatkan dan direnggangkan.
(a) memancarkan alur sinar yang halus, Compression and rarefaction can be formed if there is a material
can be transmitted in a very narrow beam, which can be compressed and rarefied.
(b) boleh difokus kepada sasaran lebih tepat,
can focus at the target more accurately, • Halaju gelombang bunyi berbeza dalam gas, cecair dan pepejal.
(c) boleh memindahkan tenaga yang besar kerana Ini disebabkan oleh perbezaan dalam kekuatan daya antara
atom-atom dan kedudukan atom-atom dalam tiga keadaan
frekuensi tinggi, / can transfer large quantities of tersebut. / The speed of sound differs in gas, liquid and solid. This
is due to the differences in the strength of the inter atomic forces
energy because of high frequency, and closeness of the atoms in the three states.
(d) Boleh merambat dalam jarak yang jauh.
Can travel at longer distance. • Mampatan dan renggangan merambat lebih laju dalam medium
• Pakar cermin mata dan tukang emas menggunakan berketumpatan tinggi. Gelombang bunyi merambat lebih
laju dalam cecair daripada dalam gas dan paling laju dalam
pembersih ultrasonik untuk membersihkan cermin mata pepejal.
dan emas. / Opticians and goldsmiths use ultrasonic cleaner Compressions and rarefactions propagate faster in denser
to clean spectacles, jewellery and ornaments. medium. Sound travels faster in liquids than in gases, but the
• Doktor gigi menggunakan alur ultrasonik untuk fastest in solids.
menggerudi dan membersihkan gigi.
Dentists use ultrasonic beams to vibrate and shake off dirt • Halaju gelombang bunyi, v, dalam medium boleh ditentukan
and plaque from the teeth of patients. menggunakan rumus v = f λ. / The speed of sound, v, in a medium
• Haiwan seperti gajah dan badak sumbu berkomunikasi can be determined using the formula v = f λ.
menggunakan infrasonik. / Animals like elephants and
rhinoceroses communicate using infrasound. • Halaju gelombang bunyi tidak dipengaruhi oleh tekanan. Jika
• Jika bunyi gema diukur dengan sela masa, t dan halaju tekanan atmosfera berubah, halaju gelombang bunyi dalam
gelombang bunyi ialah v, maka kedalaman, d boleh udara sentiasa tetap. / The speed of sound is unaffected by
dihitung seperti di bawah: / If the echo-sounders measure pressure. If the atmospheric pressure changes, the speed of sound
an interval of time, t, and the speed of sound wave in water is in air remains constant.

v, then the depth, d can be calculated as follows: • Halaju gelombang bunyi meningkat dengan suhu.
The speed of sound increases with temperature.
Jarak yang dilalui oleh isyarat Bot
Boat • Halaju gelombang bunyi di puncak gunung lebih rendah
yang dipantulkan daripada halajunya di paras laut kerana suhunya dan tidak
dd dipengaruhi oleh tekanan rendah. / The speed of sound at the
Distance travelled by pulse peak of high-altitude mountains is lower than its speed at the sea
level because of temperature and not due to the lower pressure .
= halaju × masa

= speed × time

2d = v × t Dasar Laut

Seabed

© Nilam Publication Sdn. Bhd. 36

MODUL • Fizik TINGKATAN 5

Kelangsingan • Kelangsingan bunyi bergantung pada • Frekuensi lebih rendah. • Frekuensi lebih tinggi.
Pitch frekuensi, f, atau tempoh, T. Frequency is lower. Frequency is higher.
The pitch of the sound depends on the
Kenyaringan frequency, f, or period, T. • Panjang gelombang lebih • Panjang gelombang lebih
Loudness besar. kecil.
• Semakin bertambah frekuensi, Wavelength is larger. Wavelength is smaller.
Kualiti bunyi semakin bertambah kelangsingan atau
Sound quality sebaliknya. • Kurang nyaring. • Lebih nyaring.
As frequency increases, the pitch Pitch is lower. Pitch is higher.
increases or vice versa.
• Amplitud lebih besar.
• Kenyaringan bunyi bergantung kepada • Amplitud lebih kecil. Amplitude is larger. UNIT 1
amplitud, a. Amplitude is smaller.
The loudness of sound depends on the • Lebih nyaring.
amplitude, a. • Kurang nyaring. Loudness is larger.
Loudness is less.
• Semakin bertambah amplitud, semakin • Tenaga lebih besar.
bertambah kenyaringan. • Tenaga lebih kecil. Energy is larger.
As the amplitude increases, the loudness Energy is smaller.
increases.

• Kualiti bunyi bergantung kepada
bentuk gelombang.
The quality of sound depends on the
waveform.

Kedua-dua bunyi mempunyai bentuk gelombang yang berbeza.
Kualiti kedua-dua bunyi adalah berbeza.
Both sounds have different waveforms. Both sound quality is different.

Aplikasi gelombang bunyi / Application of sound waves

SONAR (Julat Navigasi Bunyi) Kelawar : Navigasi dalam gelap
SONAR (Sound Navigation Ranging) Bats: Navigation in the dark

Kapal Gelombang Gelombang tuju
Ship pantulan Incident ray

Reflected ray

Penerima Pemancar Kelawar
Receiver Emitter Bat

Air laut Halangan
Sea water Obstacle

Dasar laut (i) Kelawar memancarkan gelombang ultrasonik.
Seabed Bats emit ultrasonic waves.

(i) Pemancar memancarkan isyarat ultrasonik dengan laju, v. (ii) Gelombang ultrasonik mengenai halangan dan
dipantulkan.
The transmitter emits an ultrasonic signal at speed, v. Ultrasonic waves hits the obstacle and reflected.

(ii) Isyarat ultrasonik dipantul dan dikesan oleh penerima. (iii) Pantulan gelombang ultrasonik dikesan oleh kelawar.
The reflected ultrasonic waves is detected by the bats.
The ultrasound signal reflected and detected by the receiver.
(iv) Dengan menganggarkan masa antara gelombang
(iii) Selang masa di antara denyutan isyarat tuju dan isyarat pantulan, t, tuju dan gelombang pantulan, kelawar boleh
menganggarkan jarak suatu halangan di hadapannya.
ditentukan. / The time interval between pulses signal and the reflected By estimating the time between the incident and the
reflected waves, bats can estimate the distance of an
signal, t, is determined. obstacle in front of them.

(iv) Jarak di antara dasar laut dengan kapal, d, ditentukan dengan

formula: / The distance between the bottom of the sea in ships, d, is

determined by the formula:

d= vt
2

37 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Gelombang yang merambat di permukaan Bumi
Waves which propagate in the Earth's surface

Satelit Ionosfera
Satellite Ionosphere

UHF VHF Gelombang
langit
Gelombang
angkasa Sky wave
Space wave
1UNIT Televisyen Stesen Stesen pemancar
Stesen satelit Bumi Television Radio Transmitting station
Earth satellite station geganti
Radio Relay

station

1 Gelombang yang merambat berdekatan dengan permukaan Bumi dikenali sebagai gelombang Bumi. Gelombang radio yang
berfrekuensi rendah adalah sesuai untuk komunikasi jarak jauh mengikut permukaan Bumi.
Waves propagating near the Earth's surface is known as the wave of the Earth. Low-frequency radio waves that are suitable for long-
distance communication in accordance with the Earth's surface.

2 Oleh sebab julat jarak yang dilaluinya pendek (lebih kurang 100 km), maka stesen geganti diperlukan untuk menerima dan
menghantar isyarat.
Due to the short range of distance traversed, so a relay station is needed for receiving and transmitting the signal.

Gelombang yang dipantul oleh lapisan ionosfera
Waves reflected by the ionosphere
1 Gelombang radio yang dapat dipantul balik oleh ionosfera dari bahagian atas atmosfera jika frekuensinya kurang daripada

30 MHz dikenali sebagai gelombang langit. Gelombang ini boleh merambat melalui suatu jarak yang lebih jauh.
Radio waves can bounce off the ionosphere from the upper atmosphere if its frequency is less than 30 MHz known as sky wave. These
waves can propagate through a greater distance.

2 Gelombang langit bergerak mengelilingi Bumi dengan pantulan antara ionosfera dengan permukaan Bumi.
Sky wave moves around the Earth with reflection between the ionosphere and the Earth's surface.

Gelombang yang merambat menembusi ionosfera
Propagating waves penetrate the ionosphere
1 Jika frekuensi gelombang radio melebihi 30 MHz, gelombang itu boleh merambat menembusi ionosfera ke ruang angkasa.

Gelombang jenis ini dikenali sebagai gelombang angkasa. Gelombang angkasa merambat mengikut garis lurus ke penerima di
sepanjang garis pandangan dari pemancar.
If the frequency of radio waves exceeding 30 MHz, the wave can penetrate the ionosphere into space. This type of wave is called as
space wave. Space wave propagates in a straight line to the receiver along the line of sight of the transmitter.

2 Pelbagai perambatan gelombang angkasa boleh ditambah melelui satelit. Satelit bertindak sebagai stesen geganti untuk
menerima dan menghantar semula gelombang ke permukaan Bumi.
Range of propagation of space wave can be added via satellite. Satellite acts as a relay station for receiving and transmitting it back to
the Earth's surface.

Penerimaan gelombang radio
Receiving radio wave
1 Untuk menerima isyarat radio, kita memerlukan sebuah radio dengan suatu sistem penerimaan di dalamnya.

To receive radio signals, we need a radio with a reception system in it.

2 Sistem penerimaan radio berfungsi menerima gelombang radio, mengasingkan isyarat frekuensi audio dengan isyarat
pembawa dan kemudian menukarkan semula isyarat frekuensi audio kepada bunyi.

The function of radio reception system is to receive the radio waves, separating audio frequency signal with a carrier signal and then
convert the audio frequency signals back into sound.

© Nilam Publication Sdn. Bhd. 38

MODUL • Fizik TINGKATAN 5

Latihan / Exercise

1 Isyarat sonar telah dihantar secara menegak ke dasar laut dari sebuah kapal dan dipantulkan dari dasar laut dan dikesan oleh

mikrofon 0.8 s selepas dipancarkan. Jika halaju bunyi dalam air ialah 1 500 m s–1, berapakah kedalaman dasar laut itu?

A sonar signal sent vertically downwards from a ship is reflected from the ocean floor and detected by a microphone on the keel 0.8 s

after transmission. If the speed of sound in water is 1 500 m s–1, what is the depth of the ocean?

Penyelesaian

Solution Maklumat tambahan:
Additional information:

2d = v × t

2d = (1 500 m s–1) × (0.8 s)

d = 1 500 m s–1 × 0.8 s = 600 m UNIT 1
2

Gelombang Elektromagnet
1.7 Electromagnetic Waves

1 Gelombang elektromagnet ialah gelombang melintang, yang terdiri daripada ayunan medan elektrik dan medan magnet yang

berserenjang dengan satu sama lain. / Electromagnetic waves are transverse waves, consisting of oscillating electric

fields and magnetic fields which are perpendicular to each other.

Medan elektrik / Electric field

Medan magnet
Magnetic field

Arah perambatan gelombang
Direction of propagation of waves

2 Spektrum elektromagnet ialah siri gelombang-gelombang elektromagnet mengikut ketertiban panjang gelombang secara
menurun atau frekuensi secara menaik. / Electromagnetic spectrum is a series of electromagnetic waves in descending order of
wavelength or ascending order of frequency.

Radio Gelombang mikro Cahaya Ultraungu Sinar X Sinar gamma
Radio Microwaves Infra merah nampak Ultraviolet X-rays Gamma rays

Infrared Visible light

Lebih panjang / Longer Panjang gelombang (m) / Wavelength (m) Lebih pendek / Shorter

102 10 1 10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 10–9 10–10 10–11 10–12 10–13

Saiz kesetaraan secara hampir: / The size of almost equality

Padang bola Manusia Rama-rama Kepala Bakteria Virus Molekul Atom Nukleus
Football field Human Butterfly jarum Becteria Virus Molecule Atom atom
Needle head
Nucleus
atom

Lebih rendah / Lower Frekuensi (Hz) / Frequency (Hz) Lebih tinggi / Higher

106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

39 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Komponen medan magnet dan medan elektrik saling bergetar berserenjang antara satu sama lain dan ke arah perambatan
gelombang.
The magnetic field and electric field components of the wave oscillate at right angles to each other and to the direction of propagation of
the wave.

Gelombang melintang Boleh dikutubkan .
Can be polarised .
Transverse
waves

1UNIT Mematuhi persamaan gelombang, Sifat Gelombang Boleh merambat melalui vakum pada
c (halaju cahaya) = f λ Elektromagnet kelajuan cahaya c = 3 × 108 m s–1
Obey the wave equation, Properties of Can travel through a vacuum at the speed
c (speed of light) = f λ Electromagnetic of light c = 3 × 108 m s–1

Waves Neutral elektrik
Electrically neutral
Tenaga dipindahkan oleh
is transferred by the
gelombang.
Energy

waves.

Tidak memerlukan medium Mempunyai fenomena yang sama seperti cahaya:
untuk merambat. Undergo the same phenomena as light:
Do not require a medium to
propagate. Pantulan, biasan, belauan dan interferens

Reflection, refraction, diffraction and interference

Kesan buruk dan aplikasi gelombang elektromagnet
Detrimental effects and the applications of electromagnetic waves

Jenis gelombang EM Sumber Aplikasi Kesan buruk
Types of EM waves Source Application Detrimental effects
Dos berlebihan menyebabkan
Gelombang radio Pemancar / litar pengayun i. Telekomunikasi (telefon) kanser dan leukimia
elektrik Telecommunications (telephone) Large doses of radio wave may
Radio waves Transmitter / electrical cause cancer and leukaemia
oscillating circuit ii. Penyiaran (TV dan radio)
Broadcasting (TV and radio) Katarak, kesan pada otak
Gelombang mikro Pemancar gelombang mikro Cataracts, effects on the brain
Microwaves dan oven iii. Komunikasi dalam kapal terbang,
Microwave transmitter, kapal dan peluru berpandu Pemanasan melampau
Inframerah Microwave ovens Communication in aircrafts, ships and Overheating
Infrared missiles
Objek panas
Hot objects iv. Digunakan dalam radio astronomi
Used in astronomy radios

i. Radar, memasak
Radar, cooking

ii. Satelit komunikasi
Communication satellites

Alat kawalan jauh, kamera, sistem
keselamatan
Remote control, camera, security systems

© Nilam Publication Sdn. Bhd. 40

MODUL • Fizik TINGKATAN 5

Cahaya nampak Matahari, objek panas, i. Penglihatan, fotosintesis Terlalu banyak cahaya UNIT 1
Visible light nyalaan mentol, tiub dalam tumbuhan menyebabkan kerosakan
berpendarfluor Sight, photosynthesis in plants retina
Sinar ultraungu Sun, hot objects, light bulbs, To much light can damage
Ultraviolet radiation fluorescent tubes ii. Fotografi / Photography the retina
Objek yang sangat panas, Terlalu tinggi dos UV
Sinar-X matahari, lampu wap merkuri i. Membunuh mikrob, mengesan wang yang boleh merosakkan
X-rays Very hot objects, the Sun, kertas palsu / Kill microbes, detecting retina, menyebabkan
mercury vapour lamps forged bank notes kanser kulit
Sinar gama Large doses of UV which
Gamma rays Tiub sinar-X ii. Pensterilan untuk memusnahkan can damage retina, causes
X-rays tubes kuman / Sterilisation to destroy germs skin cancer

Bahan radioaktif iii. Penghasilan vitamin D dalam kulit Kerosakan sel; kanser
Radioactive substances Production of vitamin D in skin Cell damage; cancer

i. Radioterapi, radiografi Kerosakan sel; kanser
Radiotherapy, radiography dan mutasi
Cell damage, cancer and
ii. Sistem kawalan / Security system mutations

iii. • Untuk mengesan retakan pada
logam. / To detect cracks in metal.

• Memeriksa barang di lapangan
terbang.
Checking of luggage at airports.

i. Rawatan kanser
Cancer treatment

ii. Pensterilan peralatan
Sterilisation of equipment

iii. Kawalan perosak dalam pertanian
Pest control in agriculture

iv. Untuk mengesan kebocoran paip
dalam tanah
To detect leakages in underground pipes

L atihan Pengukuhan / Enrichment Exercise

1 Graf yang manakah menunjukkan hubungan antara Gelombang tuju Concrete wall
frekuensi, f, dengan tempoh, T, bagi suatu gelombang?
Incident wave
Which graph shows the relationship between frequency, f and
period, T, of a wave?

A f C f

0 T0 T Gelombang pantulan
Reflected wave
B f D f
Rajah 2 / Diagram 2
0 T0 T Perbandingan manakah yang betul tentang pantulan

2 Rajah 2 menunjukkan gelombang bunyi dipantulkan pada gelombang bunyi dan gelombang tuju?
dinding konkrit. / Diagram 2 shows a sound wave reflected Which comparison is correct about the reflected sound wave
on a concrete wall. and the incident sound wave?
A Panjang gelombang bagi gelombang tuju lebih

pendek daripada gelombang pantulan.
The wavelength of the incident wave is shorter than the

reflected wave.
B Laju gelombang tuju dan gelombang pantulan adalah

sama. / The speed of the incident wave and the reflected
wave is the same.

41 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

C Frekuensi gelombang tuju kurang daripada 5 Rajah 5 menunjukkan perambatan gelombang air melalui
gelombang pantulan. / The frequency of the incident blok perspek di dalam tangki riak. / Diagram 5 shows water
wave is less than the reflected wave. wave propagating through a perspex block in a ripple tank.

D Sudut gelombang tuju lebih besar daripada sudut Blok perspek
gelombang pantulan. / The angle of incident wave is Perspex block
greater than the angle of reflected wave.
Rajah 5 / Diagram 5
3 Antara rajah berikut, yang manakah menunjukkan contoh Corak gelombang manakah yang diperhatikan apabila
gelombang membujur?
Which diagram shows an example of a longitudinal wave? gelombang merentasi blok perspek?
A Cahaya bergerak dari lampu ke skrin. Which wave pattern is observed when the wave pass through
Light traveling from a lamp to a screen. the perspex block?

1UNIT A C

Lampu Kanta Skrin
Lens Screen
Lamp

B Riak air disebabkan pencelup bergetar ke atas dan ke B D
bawah.

Water ripple caused by a dipper moving up and down.

Pencelup Air 6 Tsunami adalah satu siri gelombang air yang disebabkan
Dipper Water oleh sesaran isi padu air yang besar, biasanya terjadi dalam
lautan atau tasik yang besar. Sesaran air ini selalunya
menyumbang kepada kejadian gempa bumi, gelinciran
tanah, letupan gunung berapi dan runtuhan salji. Didapati
C Spring ditolak ke hadapan dan ke belakang. bahawa panjang gelombang, λ tsunami semakin pendek
A spring is pushed forwards and backwards. apabila menghampiri pantai seperti yang ditunjukkan
dalam Rajah 6.
A tsunami is a series of water wave caused by the displacement
of a large volume of water, usually occurs in ocean or large
D Spring ditolak ke atas dan ke bawah. lake. This displacement of water is usually contributes to
A spring is pushed up and down. earthquakes, landslides, volcanic eruptions and avalanche.
It is found that the wavelength, λ of the tsunami becomes
smaller towards the beach as shown in the Diagram 6.

4 Rajah 4 menunjukkan penggunaan gelombang elektromagnet.
Diagram 4 shows the application of electromagnetic wave.

Rajah 6 / Diagram 6
Ini disebabkan oleh / It is due to
Rajah 4 / Diagram 4
Pasangan manakah menunjukkan tentang ciri-ciri A pantulan gelombang
reflection of waves
gelombang yang digunakan? / Which pair shows the B pembiasan gelombang
characteristics of the wave used? refraction of waves
C pembelauan gelombang
Frekuensi Panjang gelombang diffraction of waves
Frequency Wavelength D interferens gelombang
interference of waves
A Tinggi / High Pendek / Short

B Tinggi / High Panjang / Long

C Rendah / Low Panjang / Long

D Rendah / Low Pendek / Short

© Nilam Publication Sdn. Bhd. 42

MODUL • Fizik TINGKATAN 5

7 Rajah 7 menunjukkan satu alat yang digunakan oleh Jika panjang gelombang ialah 1.0 cm, berapakah nilai bagi
pengurup wang untuk mengesan wang kertas palsu.
jarak antara dua sumber, a?
Diagram 7 shows a device used by a money-changer to detect
counterfeit bank notes. If the wavelength is 1.0 cm, then what is the value of a, the

distance between the two sources?

A 2.0 cm C 2.8 cm

B 2.4 cm D 3.2 cm

10 Rajah 10 menunjukkan dua denyutan gelombang
dihasilkan pada P dan Q. P dan Q adalah sama jarak
Rajah 7 / Diagram 7 dari X.
Diagram 10 shows two wave pulses produced at P and Q. P
Jenis gelombang elektromagnet yang digunakan ialah and Q are at the same distance from X.
The type of electromagnetic wave used is
A gelombang mikro P UNIT 1
microwave
B inframerah a a
infrared X Q
C sinar ultraungu
ultraviolet ray Rajah 10 / Diagram 10
D sinar-X
x-ray Bentuk gelombang yang manakah diperhatikan di X?
Which waveform is observed at X?

A

2a

8 Rajah 8 menunjukkan imej yang diperoleh seorang guru B 2a
yang mengendalikan suatu aktiviti dengan cahaya laser a
serta radas yang lain. C
Diagram 8 shows an image obtained by a teacher who D
conducted an activity with laser light and other apparatus.

Rajah 8 / Diagram 8 11 Rajah 11 menunjukkan pinggir-pinggir yang diperoleh
Rajah 8 menunjukkan fenomena apabila cahaya hijau digunakan dalam eksperimen
dwicelah Young.
Diagram 8 shows the phenomenon of Diagram 11 shows the fringes obtained when green light is
A pantulan / reflection used in a Young’s double slit experiment.
B pembiasan / refraction
C pembelauan / diffraction Rajah 11 / Diagram 11
D interferens / interference Antara berikut, yang manakah merupakan pinggir-pinggir

9 Rajah 9 menunjukkan satu corak interferens. yang diperhatikan jika cahaya hijau digantikan dengan
Diagram 9 shows an interference pattern. cahaya merah?
Which of the following fringes are observed when the green
Crest light is replaced by red light?
Puncak A

Source 1 2.5 cm B
Sumber 1
7.0 cm C
a
43 © Nilam Publication Sdn. Bhd.
Source 2
Sumber 2

Rajah 9 / Diagram 9

MODUL • Fizik TINGKATAN 5

S oalan Struktur / Structure Questions

1 Rajah 1 menunjukkan spektrum bagi gelombang elektromagnet. / Diagram 1 shows the spectrum of electromagnetic waves.

Gelombang radio Gelombang mikro Q Cahaya nampak Sinar ultraungu Sinar-X Sinar gama
X-ray Gamma ray
Radio waves Microwave Visible light Ultraviolet

1UNIT Rajah 1 / Diagram 1
(a) (i) Dengan merujuk kepada Rajah 1, namakan sinaran Q. / Based on Diagram 1, name the type of radiation Q.

Q ialah inframerah / Q is infrared
(ii) Namakan satu kegunaan sinaran Q. / Name one application of radiation Q.

Alat kawalan jauh. / Remote control.
(b) Bandingkan panjang gelombang bagi gelombang mikro dengan panjang gelombang bagi sinar-X.
Compare the wavelength of microwave with wavelength of X-ray.

Panjang gelombang bagi gelombang mikro lebih panjang daripada panjang gelombang sinar-X.

The wavelength of microwave is longer than wavelength of X-ray.
(c) Namakan satu gelombang elektromagnet yang panjang gelombangnya lebih panjang daripada panjang gelombang Q.
Name one electromagnetic wave which has longer wavelength than wavelength of Q.

Gelombang radio // gelombang mikro. / Radio wave // microwave.
(d) Namakan satu kuantiti fizik yang malar bagi semua gelombang elektromagnet.
Name one constant physical quantity in all electromagnetic waves.

Semua gelombang elektromagnet mempunyai laju yang sama dalam vakum.

All electromagnetic waves have the same speed in vacuum.
(e) Apakah bezanya di antara gelombang elektromagnet dengan gelombang bunyi?
What is the difference between electromagnetic wave and sound wave?

Gelombang elektromagnet ialah gelombang melintang manakala gelombang bunyi ialah gelombang membujur.

Electromagnetic wave is a transverse wave whereas sound wave is a longitudinal wave.
Atau / Or

Gelombang elektromagnet boleh merambat dalam vakum manakala gelombang bunyi tidak boleh.

Electromagnetic waves can travel in vacuum whereas sound waves cannot.

2 Rajah di bawah menunjukkan sebuah gitar. Seorang pemain gitar memetik tali dan bunyi dihasilkan.
The diagram below shows a guitar. A guitarist plucks the strings and the sound is produced.

(a) Dengan menggunakan konsep fizik yang sesuai, terangkan bagaimana seorang pendengar dapat mendengar bunyi
yang dihasilkan oleh gitar. / By using the appropriate physics concept, explain how a listener can hear the sound produced
by the guitar.

• Tali gitar dipetik dan bergetar / Strings of guitar are plucked and strings vibrates

• Getaran tali gitar menggetarkan molekul-molekul udara sekeliling

Vibration guitar strings vibrate the air molecules around

© Nilam Publication Sdn. Bhd. 44

MODUL • Fizik TINGKATAN 5

• Molekul-molekul udara mengalami mampatan dan renggangan secara berselang seli
The molecules of air undergoes compression and rarefaction alternately
• Tenaga dipindahkan ke telinga pendengar / Energy is transferred to the listener's ears
• Gegendang telinga bergetar / Eardrum vibrates

(b) Gitar itu akan digunakan dalam suatu persembahan. Cadang dan terangkan pengubahsuaian yang perlu dibuat ke atas UNIT 1
gitar tersebut supaya ia boleh menghasilkan bunyi secara lebih berkesan dan bunyi gitar akan kedengaran lebih jelas oleh
pendengar yang duduk jauh darinya. Cadangan anda perlu merangkumi aspek-aspek berikut: / The guitar will be used in a
presentation. Suggest and explain modifications to be made to the guitar so that it can generate sounds more effectively and guitar
sound will be heard more clearly by the listener sitting far away from it. Your suggestion should include the following aspects:

(i) Magnitud daya yang digunakan untuk memetik tali gitar. / The magnitude of the force used to pluck the strings of a guitar.
(ii) Tindakan pelarasan melalui tombol gitar. / Action of adjustment made through the knob.
(iii) Saiz kotak kayu. / The size of the wooden box.
(iv) Pengubahsuaian lain. / Other modifications.

Aspek cadangan / Suggestion aspect Sebab / Reason

Magnitud daya yang digunakan untuk memetik tali • Amplitud lebih besar / Larger amplitude
gitar: / The magnitude of the force used to pluck the • Tenaga lebih besar / Larger energy
strings of a guitar: • Lebih nyaring / Louder
Lebih besar / Larger

Tindakan pelarasan melalui tombol gitar: • Frekuensi lebih tinggi / Higher frequency
Action of adjustment made through the knob: • Lebih langsing / Higher pitch
Tombol diputar untuk mengetatkan tali-tali gitar
The knob is rotated to tighten the strings of the guitar

Saiz kotak: Lebih besar • Lebih banyak molekul udara bergetar
Size of the box: Larger More air molecules vibrates

• Lebih banyak tenaga dipindahkan
More energy transferred

Pengubahsuaian-pengubahsuaian lain: • Tali tidak mudah terputus
Other modifications: Strings are not easily broken
• Tali yang lebih kuat / Stronger strings
• Tali yang lebih halus / Thinner strings • Frekuensi lebih tinggi / lebih langsing
Higher frequency / Higher pitch

Teknik menjawab [Format Kertas 2: Bahagian B]
Answering technique [Paper Format 2: Part B]

Rajah di bawah menunjukkan sebuah sistem radar yang digunakan untuk menentukan kedudukan sebuah kapal terbang di lapangan
terbang. / The diagram below shows a radar system used to determine the position of a plane at the airport.

Pemantul parabola Kapal terbang
Parabolic reflector Plane

Pemancar / Penerima Cadang dan terangkan bagaimana untuk menghasilkan
Transmitter / Receiver radar yang dapat menentukan kedudukan sebuah kapal
terbang dengan efektif.
Suggest and explain how to produce a radar that can
determine the position of a plane effectively.

[10 markah / marks]

45 © Nilam Publication Sdn. Bhd.

MODUL • Fizik TINGKATAN 5

Cadangan Sebab
Suggestion Reason

Jenis gelombang yang digunakan: / Wave type used:

Gelombang mikro • Tenaga lebih tinggi / Higher energy

Gelombang mikro [M1] • Frekuensi lebih tinggi / Higher frequency [M2]
[M4]
Luas permukaan pemantul parabola: / The surface area of a parabolic reflector: [M6]
[M8]
Lebih besar Menerima lebih banyak isyarat gelombang pantulan [M10]
[M12]
Larger [M3] Receive more reflected signals [M14]
[M16]
1UNIT Jenis pemantul parabola: / Type of parabolic reflector:

Cekung Menumpukan isyarat gelombang pantulan yang dikesan

Concave [M5] To converge the reflected wave signals detected

Kedudukan pemancar: / Position of transmitter: Isyarat gelombang tuju dapat dipancarkan ke jarak yang lebih jauh
Pada titik fokus

At focal point [M7] Incident wave signal can be transmitted to longer distances

Kedudukan penerima: / Position of receiver: Isyarat gelombang terpantul ditumpukan pada penerima
Pada titik fokus [M9] Reflected signals wave is focused on a receiver
At focal point

Lokasi sistem radar dipasang: / The location of the radar system installed:

Tempat yang lebih tinggi dan terbuka • Kurang halangan / Less obstacle

Higher and open place [M11] • Tiada gangguan isyarat / There is no signal interruption

Amplitud gelombang isyarat tuju: / The amplitude of the incident signal:

Lebih besar Isyarat gelombang pantulan dapat dikesan dengan lebih mudah

Larger [M13] Reflected signals can be detected easily

Jenis permukaan pemantul parabola: / Type of surface for parabolic reflector:

Berkilat Pemantul yang lebih baik

Shiny [M15] Good reflector

Perhatian / Attention :

Jawapan boleh diolah dalam bentuk poin.

Answers can be processed in the form of points.

Untuk soalan dengan panduan aspek cadangan, pastikan ada sekurang-kurangnya 5 aspek cadangan.

For questions with guidance aspects of the suggestion, make sure there are at least five aspects of suggestion.

Jika tidak cukup 5 aspek cadangan, gunakan kreativiti sendiri untuk mencukupkannya supaya menjadi sekurang-kurangnya 5 aspek cadangan.

If not enough 5 aspects of suggestion, use your own creativity to suffice in order to be at least five aspects of suggestion.

Jika tidak diberi sebarang panduan aspek cadangan, anda perlu memikirkan sekurang-kurangnya 5 aspek cadangan atas kreativiti sendiri.

If not given any aspect of the guidelines, you should think of at least five aspects of suggestion on your own creativity.

Boleh beri lebih daripada satu sebab atau keterangan. Maklumat tambahan:
May give more than one reason or explanation. Additional information:

© Nilam Publication Sdn. Bhd. 46


Click to View FlipBook Version