[CHAPTER 2:PARTIAL FRACTION]
d. x3
(x 2)(x 3)
Ans: x 1 8 2) 27
5(x 5(x 3)
48
[CHAPTER 3: TRIGONOMETRY]
TRIGONOMETRY
OBJECTIVES:
At the end of this topic, students should be able to understand about:
i. Introduction of trigonometric
ii. Define sine, cosine, tangent, cosecant, secant and cotangent.
iii. Graph of sine, cosine and tangent.
iv. Positive and negative value of trigonometric.
v. Apply sine and cosine rules.
3.1 INTRODUCTION OF TRIGONOMETRY
3.1.1 ANGLES AND THEIR MEASURE
ANGLES IN UNIT DEGREES AND RADIANS
Angles are measured in either degrees or radians (rad).
The size of a radian is determined by the requirement that there are 2 radians in a circle.
Thus 2 radians equals 360 degrees.
This mean that 1 radian 180 and 1 degree radians.
, 180
EXAMPLE 1 (b) 135
1. Express in radian measure:
(a) 54
SOLUTION
(a) 54 54 0.9425 rad
180
(b) 135 135 3 rad
180 4
49
[CHAPTER 3: TRIGONOMETRY]
2. Express each angle in degree measure:
(a) rad (b) 5 rad
3 9
SOLUTION
(a) rad 180 60
3 3
(b) 5 rad 5 180 100
9 9
LET’S PRACTICE 1
1. Express in radian measure:
a) 330
b) 160
c) 42
2. Express each angle in degree Ans: 5.76, 2.79 & 0.733
measure: Ans: 76.390 & 7560
a) 4 rad
3
b) 251
RIGHT ANGLE TRIANGLE
In mathematics, the pythagorean theorem, also known as Pythagoras’ theorem, is a
fundamental relation in Euclidean geometry among the three sides of a right triangle.
It states that the area of the square whose side is the hyotenuse is equal to the sum of the
areas of the squares on the other two sides.
By the Pythgorean theorem that the sum of the squares of each of the smallest sides equals
the square of the hypotenuse.
Trigonometric functions are how the relationships amongst the length of the sides of a right
triangle vary as the other angles are changed.
Formula;
c a2 b2
50
[CHAPTER 3: TRIGONOMETRY]
3.1.2 TRIGONOMETRIC RATIOS
The ratios of the sides of a right triangle are called trigonometric ratios.
Three common trigonometric ratios are the sin (sin), cosine (cos) and tangent (tan).
The three others trigonometric ratios are the cosecant (csc), secant (sec) and
cotangent (cot).
Trigonometric ratios in right triangles
SOH-CAH-TOA : an easy way to remember trigonometric ratios
The word SOHCAHTOA helps us remember the definitions of sine, cosine and
tangent.
Table 1:
ACRONYM PART VERBAL DESCRIPTION MATHEMATICAL
DEFINITION
SOH Sine is Opposite over Hypotenuse sin A opposite
hypotenuse
CAH Cosine is Adjacent over Hypotenuse cos A adjacent
hypotenuse
TOA Tangent is Opposite over Adjacent tan A opposite
adjacent
51
[CHAPTER 3: TRIGONOMETRY]
EXAMPLE 2
Find sin A and tan A Figure 2:
SOLUTION
sin A opposite tan A opposite
hypotenuse adjacent
sin A 3 tan A 3
5 4
LET’S PRACTICE 2
1.
Find: 5 12 12
13 13 5
a) cosF
b) sin F
c) tan F
Ans: , &
52
[CHAPTER 3: TRIGONOMETRY]
2.
a) sin H d) cscG
b) cos H e) secG
c) tan H f) cotG
Ans: 8 , 15 , 8 , 17 , 17 & 15
17 17 15 8 15 8
3.
Find: d) cosecB
e) sec B
a) sin B f) cot B
b) cos B
c) tan B
Ans: 5 , 12 , 5 , 13 , 13 & 12
13 13 12 5 12 5
4.
Given BAC 60 0 . Find the
length of BC.
Ans: 22.52
53
[CHAPTER 3: TRIGONOMETRY]
3.2 GRAPH OF SINE, COSINE AND TANGENT
GRAPH OF SINE
y sin x
x0 90 0 00 90 0 1800 270 0 360 0
x rad 0 3 2
2
y 0 22 0
1
1 0 1
GRAPH OF COSINE
y cos x
x0 90 0 00 90 0 1800 270 0 360 0
x rad 0 3 2
2
y 1 22
0
0 1 0 1
54
[CHAPTER 3: TRIGONOMETRY]
GRAPH OF TANGENT
y tan x
x 0 90 0 45 0 00 45 0 90 0 1800 270 0
x rad 0 3
2 4 42
y 0 2
1 1
0
An asymptote is an imaginary line that a curve get closer and closer to but never
touches.
55
[CHAPTER 3: TRIGONOMETRY]
3.3 POSITIVE AND NEGATIVE VALUE OF TRIGONOMETRIC
FOUR QUADRANTS
RELATED ANGLE
Reference angles allow us to evaluate more complex angles and makes easier when
evaluating angles.
A reference angle x and x ' , is the positive acute angle made by the terminal side of the
angle x and x-axis.
The figure shows differing angles that lies in quadrants I, II, III and IV.
Remember that in quadrant I, an angle and its related angle are the same measure.
180 0 a a
180 0 a 360 0 a
56
where;
= Actual angle
a = Reelated angle
[CHAPTER 3: TRIGONOMETRY]
EXAMPLE 3
Find the value of for sin 0.5 where 0 0 360 0
SOLUTION Sin positive Quadrant 1:
(Quadrant 1 and 2) 300
sin 0.5
Quadrant 2:
sin 1 0.5 180 0 30 0 150 0
300
Therefore;
30 0 & 150 0
LET’S PRACTICE 3
1. Find the value of for the followings where 0 0 360 0
a. cos 0.8264
Ans: 34.270 & 325.730
b. sin 0.8660
c. cos ec 5.461 Ans: 600 & 1200
Ans: 10.550 & 169.450
57
[CHAPTER 3: TRIGONOMETRY]
d. sec 1.5642
Ans: 50.260 & 309.740
2. Find the value of for the followings where 0 0 360 0 ;
a. cos 0.9061
Ans: 154.970 & 205.030
b. tan 1.364
c. sin 0.5246 Ans: 126.250 & 306.250
d. cot 2.53
Ans: 211.640 & 328.360
Ans: 158.430 & 338.430
58
[CHAPTER 3: TRIGONOMETRY]
3. Find the values of in the range 0 0 360 0 for each of the following,
a. sin 1 0.5870
2
Ans: 71.88 & 288.12
b. cos 1 0.7384
2
Ans: 275.2
c. cos2 0.4756
Ans: 30.8 , 149.2 , 210.8 & 329.2
59
[CHAPTER 3: TRIGONOMETRY]
3.4 TRIGONOMETRIC EQUATIONS AND IDENTITIES
1. Basic Identities
Sin Tan
Cos
2. Trigonometric Identities
cos2 sin2 1
1 tan2 sec2
cot2 1 cosec2
3. Angle Sum and Difference Identities
sin sin cos cos sin
cos cos cos sin sin
tan tan tan
1 tan tan
4. Double Angle Identities
sin 2A 2sin Acos A
cos 2A cos2 A sin 2 A
cos 2A 1 2sin 2 A
cos 2A 2 cos2 A 1
tan 2 A 1 2 tan A
tan 2A
60
[CHAPTER 3: TRIGONOMETRY]
EXAMPLE 3
Solve sin x 2 3where 0 0 x 360 0
SOLUTION Sin positive Quadrant 1:
(Quadrant 1 and 2) x 90 0
sin x 2 3 Quadrant 2:
sin x 1 Reference Angle x 180 0 90 0 90 0
x sin 1 1
x 900 Therefore;
x 900
EXAMPLE 4
Solve the equation 2 cos 2 3 cos 1 0 for the values of in the range 0 0 x 360 0
SOLUTION
2 cos2 3cos 1 0
2cos 1cos 1 0
2 cos 1 0 cos 1 0 Cos positive
cos 1 (Quadrant 1 and 4)
cos 1 Cos positive cos 1 1 Reference angle
2 (Quadrant 1 and 4) 00
cos 1 1 Reference angle
2
600 Quadrant 1:
00
Quadrant 1: Quadrant 4:
600 360 0 00 360 0
Quadrant 4:
360 0 60 0 300 0
Therefore;
00,600,3000 &3600
61
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 5
1. Solve each of the following equations for 0 0 360 0 .
a. 4sin 3cos
Ans: 36.87 & 216.87
b. sin cos 0
Ans: 135 & 315
c. 4 tan 3sec
Ans: 48.59 & 131.4
d. 2 tan cos ec 3
Ans: 48.19 & 311.81
2. Solve the equation 1 2sin 4cos2 0 for values of in the range 0 0 360 0 .
Ans: 48.59 , 131.41 , 210 & 330
62
[CHAPTER 3: TRIGONOMETRY]
3. Solve each of the following equations for 0 0 x 360 0 .
a. 2 cos 2 x cos x
Ans: 60 , 90 , 270 & 300
b. 5sin x cos x sin x
Ans: 78.46 & 281.54
c. sin 2 x sin x 2 0
d. 2 tan 2 x sec x tan x Ans: 270
e. 3 cos 2 x 2 sin x cos x
Ans: 30 & 150
Ans: 56.31 & 236.31
63
[CHAPTER 3: TRIGONOMETRY]
4. Solve each of the following equations for values of in the range 0 0 360 0 .
a. 8 sin 2 2 cos 5 0
Ans: 41.41 , 120 , 240 & 318.59
b. 7 sin 2 cos 2 5 sin
Ans: 19.47 , 30 , 150 & 160.53
c. 3cos 2 cot
Ans: 41.81 & 138.19
64
[CHAPTER 3: TRIGONOMETRY]
3.5 SINE AND COSINE RULES
3.5.1 SINE RULE
Sine Rule:
a A b c
sin sin B sin C
sin A sin B sin C
abc
EXAMPLE 5 SOLUTION:
1.
ABC 180 0 75 0 40 0
Find the length of AC.
ABC 65 0
AC 8.2
sin 650 sin 400
AC 8.2sin 650 11.56cm
sin 400
2. Solve the triangle with the following given dimensions:
a 43cm , b 75 cm and B 30 0
SOLUTION:
sin A sin B
a b
sin A sin 300
43 75
A sin 1 43sin 300 16.660
75
65
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 6
1
Find the length of AC Ans: 4.52cm
2.
Find ABC Ans: 31.69
3.
Find ABC and the length of AB
Ans: 11.82 & 10.02cm
66
[CHAPTER 3: TRIGONOMETRY]
4.
Find the length of AC and BC. Ans: 5.19cm & 6.35cm
5. Solve the triangles with the given parts:
a) a 45.7cm , A 68.20 , B 47.00
b) a 4.608m , b 3.207m , A 18.230
c) b 742mm , B 530 , C 3.50
Ans:
a) C 64.80 , b 36cm , c 44.54cm
b) B 12.580 , C 149.190 , c 7.545m
c) A 123.50 , a 774.75mm , c 56.72mm
67
3.5.2 COSINE RULE [CHAPTER 3: TRIGONOMETRY]
Cosine Rule:
a2 b2 c2 2bccos A
b2 a2 c2 2accos B
c2 a2 b2 2abcosC
EXAMPLE 6 SOLUTION:
1. Given a = 16.4cm, b = 11.8cm and C 670 .
c2 a2 b2 2abcosC
Find the length of c.
c2 16.42 11.82 216.411.8cos670
c2 256.97
c 256.97
c 16.03cm
2. Solve the triangle given that a 6.00cm , b 7.56cm and C 540
SOLUTION:
c2 a2 b2 2abcosC
c2 62 7.562 267.56cos540
c 6.31cm
For A , use the law of sines:
sin A sin C
a c
sin A sin540
6 6.31
sin A 6 sin 540
6.31
A 50.290
B 1800 50.290 540 75.710
68
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 7
1. Given a = 7cm, b = 5cm and C 600 . Find
the length of c.
Ans: 6.24cm
2. Given a = 7cm, b = 5cm and c = 3cm. Find B
.
Ans: 38.210
3. Given a = 15cm, b = 12cm and c = 14cm.
Find A .
Ans: 69.990
69
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 8
1. Given ABC 640 . Find:
a. A
b. length of c
Ans: 74.050 & 6.4cm
2. Given the length of JL= 6.2cm, KL = 4.6cm and
K 520 . Find:
a. the angle of I
b. length of JK
Ans: 92.220 & 7.86cm
3. Given the length of OP = 9.1cm, OQ = 5.9cm and
PQ = 10.2cm. Find:
a. P
b. Q
Ans: 35.010 & 62.250
70
[CHAPTER 3: TRIGONOMETRY]
3.6 AREA OF TRIANGLE
Area of triangle ABC:
1 ab sin C
2
1 bc sin A
2
1 ac sin B
2
EXAMPLE 7
Given AC = 15cm, BC = 9cm and ACB 640 . SOLUTION:
Find the area of triangle.
Area of ABC;
1 159sin 640
2
60.67cm2
LET’S PRACTICE 9
1. Given AC = 6cm, BC = 5 cm and ACB 490 . Find
the area of triangle ABC.
2. Given DF = 8cm, EF = 12cm and DFE 1260 . Ans: 11.32cm2
71
[CHAPTER 3: TRIGONOMETRY]
Find the area of triangle DEF.
Ans: 38.83cm2
3. Given AC = 11cm, BC = 14.5cm and B 480 .
Find the area of triangle.
Ans: 64.18cm2
4. Given ED = 7cm, DF = 9cm and EF = 6cm. Find
the area of triangle DEF.
Ans: 20.98cm2
72
[CHAPTER 4: COMPLEX NUMBER]
COMPLEX NUMBER
OBJECTIVES:
At the end of this topic, students should be able to understand about:
i. Identify real part and imaginary part
ii. Recognize that i 1
iii. Perform the operations of complex number
iv. Represent complex number using Argand Diagram
v. Types of complex number
4.1 INTRODUCTION OF COMPLEX NUMBER
Introduction including: -
Complex Number in general form
Definition of 1
Real part
Imaginary part
Real Numbers are numbers like 1, 10.158, -0.34, 2/5, 3 , or any number
that we think of.
Imaginary Numbers when squared give a negative result
The "unit" imaginary number (like 1 for Real Numbers) is i, which is the square root of −1
Because when we square i we get −1; i2 = −1
And we keep that little "i" there to remind us we need to multiply by 1
73
[CHAPTER 4: COMPLEX NUMBER]
THE CONCEPT OF A COMPLEX NUMBER
A Complex Number is a combination of a Real Number and an Imaginary Number.
General form of complex number written as:
a + bi
Examples of a (real number):-
1 10.15 -0.3462 2 3
5
Examples of b (Imaginary Numbers):-
3i 1.04i −2.8i 3i ( 2)i 1998i
4
Examples of complex number: 0.8 − 2.2i −2 + i 2 + 1 i
1 + i 39 + 3i 2
Complex Number Real Part Imaginary Part Purely Real
Purely Imaginary
3 + 2i 3 2
5 5 0
−6i 0 −6
A Complex Number consists of real part and imaginary part.
But either part can be 0.
74
[CHAPTER 4: COMPLEX NUMBER]
EXAMPLE 1
Simplify: 3. i9
1. 4 4. 2 3
2. 7i i 2
SOLUTION:
1. 4 4(1) 4i2 2i
2. 7i i 2 7i 3 7i(1) 7i
3. i9 i 2 i 2 i 2 i 2 i 1 1 1 1 i
4. 2 3 2 3 1 2 3i
LET’S PRACTICE 1 3. e e2 2e2
Simplify:
1. 2i 3i
2. 4 2 4. c k 2
Ans: 6 , 4 2i , e e2i , c k 2i
75
[CHAPTER 4: COMPLEX NUMBER]
4.2 THE OPERATIONS OF COMPLEX NUMBERS
4.2.1 ADDITION
To add two or more complex numbers, we add each part separately.
Complex Number 2
Imaginary part
a bi c di a c b d i
Complex Number 1 Real part
EXAMPLE 2
a. Perform the addition of 3 2i and 1 7i
SOLUTION 3 1 4 Add real part
( 3 2i ) + (1 7i ) Add imaginary part
2 7i 9i Answer
4 9i
b. Perform the addition of 3 5i and 4 3i
SOLUTION 3 4 7 Add real part
Add imaginary part
(3 5i) + (4 3i)
Answer
5 3i 2i
7 2i
76
[CHAPTER 4: COMPLEX NUMBER] Ans: 6 10i
LET’S PRACTICE 2 Ans: 1 15i
Solve the following operation of complex number. Ans: 4 2i
Ans: 2 9i
a. 5 2i 1 8i Ans: 9 3i
Ans: 12 24i
b. 3 6i 2 9i Ans: 47 68i
Ans: 93 29i
c. 8i 1 5 6i
d. 7 5i 5 4i
e. 2 3i 7 6i
f. 24 10i 12 14i
g.. 30 52i 17 16i
h. 72 14i 21 43i
77
[CHAPTER 4: COMPLEX NUMBER]
4.2.2 SUBSTRACTION
To subtract two or more complex numbers, we do same steps as for addition.
Subtract each part separately.
Complex Number 2 Imaginary part
a bi c di a c b d i
Complex Number 1 Real part
EXAMPLE 3
a. Subtract 7 3i and 1 7i
SOLUTION 7 1 6 Substract real part
Substract imaginary part
( 7 3i ) - (1 7i )
Answer
3 7i 4i
6 4i
b. Perform the subtraction
SOLUTION 5 3 2 Substract real part
Substract imaginary part
5 3i 3 2i
Answer
3 2i i
2i
78
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 3
Solve the following operation of complex number.
a. 7 9i 5 2i
b. 8 2i 1 3i Ans: 12 11i
Ans: 7 i
c. 8i 6 5 1i
Ans: 11 9i
d. 2 6i 4 9i Ans: 6 3i
Ans: 36 52i
e. 30 4i 6 48i Ans: 74 27i
Ans: 25 12i
b. 70 6i 4 21i Ans: 104 36i
c. 32i 11 14 20i 79
d. 91 27i 13 9i
[CHAPTER 4: COMPLEX NUMBER]
4.2.3 MULTIPLICATION
To multiply complex numbers, each part of the first complex number gets multiplied by each
part of the second complex number.
Just use "FOIL", which stands for "Firsts, Outers, Inners, Lasts"
a bic di ac adi bci bdi2
(a bi)(c di) (ac bd ) (ad bc)i
EXAMPLE 4
a. Solve the equation 3 2i1 7i Remember:- i 2 1
3 2i1 7i (31) (3 7i) (2i 1) (2i 7i)
(3) (21i) (2i) (14i 2 )
(3) (21i) (2i) (14)(1)
(3) (21i) (2i) (14)
11 23i
b. Solve the equation 1 i2
1 i1 i (11) (1 i) (1 i) (i 2 )
(1) (2i) (1) Remember:- i 2 1
0 2i
c. Solve the equation 3 2i1 7i
3 2i1 7i [(31) (2 7)] [(3 7) (2 1)i]
11 23i
80
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 4
Solve the following operation of complex number.
a. 8i 6 5 1i
Ans: 22 46i
b. 8 2i1 3i
Ans: 2 26i
c. 7 9i5 2i
Ans: 53 30i
d. 2 6i 4 9i
Ans: 44 6i
4.2.4 DIVISION
To perform the division of complex numbers, we use the conjugate.
For example,
a bi , the conjugate of the bottom number will be used.
c di
Bottom number is c di , so the conjugate will be c di . The sign for imaginary part will be
changed or the conjugate can be written as c di c di .
81
[CHAPTER 4: COMPLEX NUMBER]
Then the division of a bi when using conjugate is written as a bi c di
c di c di c di
a bi c di
Hence, a bi c di = c di c di
c di c di
=
ac adi bci bdi2 ; i 2 1
cc cdi cdi ddi2
= ac bd bc ad i
c2 d 2
EXAMPLE 5
Do the division 2 3i
4 5i
SOLUTION EXPLANATION
a. Multiply top and bottom by the conjugate of
2 3i 4 5i
4 5i 4 5i 4 5i
b. Remember that i 2 1
8 10i 12i 15i 2 2
16 20i 20i 25i c. Add like terms (and notice how on the
bottom 20i 20i cancels out.
8 10i 12i 15
16 20i 20i 25 d. Lastly we should put the answer back into
a bi form
7 22i
41
7 22 i
41 41
82
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 5
Solve the following operation of complex number.
a. 5 1i
8i 6
Ans: 22 46i
100
1 3i
b. 8 2i
Ans: 2 26i
68
c. 5 2i
7 9i
Ans: 17 59i
57
d. 4 9i
2 6i
Ans: 46 42i
40
83
[CHAPTER 4: COMPLEX NUMBER]
There is the faster way though. In the previous example, what happened at the bottom:
(4 5i)(4 5i) 16 20i 20i 25i 2
The middle terms (20i 20i) cancel out! Also i 2 1 so we end up with this:
(4 5i)(4 5i) 42 52
Which is really quite a simple result. The general rule is:
(a bi)(a bi) a 2 b2
4.3 CONJUGATE OF A COMPLEX NUMBERS
A conjugate is where we change the sign in the middle. Refer the diagram below.
In other word, it is obtained by changing the sign of the imaginary part.
A conjugate is often written with a bar over it.
Conjugate solving Explanation
5 3i = 5 3i change the sign of the imaginary part
Let z 3 4i ;
then the conjugate of z represented by
z 3 4i .
If z 5 2i , then its conjugate z 5 2i .
The conjugate is used to solve the division of complex numbers.
It is important to ease the complex number with denominator.
The trick is to multiply both top and bottom by the conjugate of the bottom.
84
[CHAPTER 4: COMPLEX NUMBER]
4.4 GRAPHICAL REPRESENTATION OF A COMPLEX NUMBER
THROUGH ARGAND DIAGRAM
Complex number can be represented by argand diagram.
If a complex number,
z a bi ; a → real part and
b → imaginary part.
4.4.1 ARGAND’S DIAGRAM TO REPRESENT A COMPLEX NUMBER
Based on the following diagram,
z a bi is the reflection image of z a bi where a bi (a bi) 2a and
(a bi) (a bi) 2bi
EXAMPLE 6
1. Show the following complex number on Argands Diagram.
a. x yi b. 3 5i
85
c. 4 7i [CHAPTER 4: COMPLEX NUMBER]
d. 2 5i
LET’S PRACTICE 6
Represent the following complex number on Argand Diagram
a. 4 9i
Ans:
b. 3 6i
Ans:
86
[CHAPTER 4: COMPLEX NUMBER]
c. 7 2i
Ans:
d. 8 5i
Ans:
4.4.2 MODULUS AND ARGUMENT
Refer to argand diagram below:
b z(a,b)
O a+bi
a real
87
[CHAPTER 4: COMPLEX NUMBER]
Modulus of the complex number z, donated by z where it is a positive value which is
equal to the length of the segment OZ.
z = x2 y2
Argument of z is angle ; tan y .
x
Hence, the argument, donated by;
tan 1 y
x
EXAMPLE 7
Find the modulus and the argument for the following complex numbers. Then show them on argand
diagram.
1. z 3 4i 2. z 4 7i
Modulus, z = 32 42 Modulus, z = 42 72
= 9 16 = 16 49
= 25 = 65
=5 = 8.06
Argument, θ = tan1 4 Argument, θ = tan1 7
3 4
= 53.13º
= 60.25
θ in Quadrant 4;
360 60.25 = 299.75º
Argand diagram: Argand diagram:
θ
θ
88
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 7
Find the modulus and the argument for the following complex numbers.
1. z 8 4i
Ans: z 8.94 , 333.43
2. z 6 9i
Ans: z 10.8 , 56.3
3. z 10i 12
Ans: z 15.62 , 320.19
3. z 10i 12
Ans: z 15.62 , 320.19
89
[CHAPTER 4: COMPLEX NUMBER]
4.5 COMPLEX NUMBER IN OTHER FORM
Complex number can be expressed as shown in the following table.
Complex Number The form of
r a bi Cartesian
r Polar
can be in degree( )
Trigonometric
r cos i sin
Exponent
can be in degree( )
rei
must be in radian (rad)
EXAMPLE 8
1. Given a complex number z 4 9i . State z in polar form, z
a. Find modulus z, z
z 42 92
16 81
97 ;
z 9.85
b. Find argument of z,
Argument = tan1 9
4
66.04
Hence, z in polar form,
z = 9.8566.04
90
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 8
Express for the following complex numbers in polar form
1. y 9 5i
Ans: 10.333.1
2. p 12 7i
Ans:13.8930.26
3. r 9(cos120 i sin120)
4. x 6.4e1.12i Ans: 9120
Ans: 6.464.17
91
[CHAPTER 4: COMPLEX NUMBER]
EXAMPLE 9
If z 530, write z in trigonometric form { r cos i sin }
z 530→ in polar form ( r )
= 5cos 30 i sin 30
LET’S PRACTICE 9
Express for the following complex numbers in trigonometric form
1. k 7 10i
Ans: 12.2(cos 305 i sin 305)
2. p 9 12i
Ans: 15(cos 53.13 i sin 53.13)
3. y 40270
Ans: 40(cos 270 i sin 270)
92
[CHAPTER 4: COMPLEX NUMBER]
4. x 21.3e 2.13i
Ans:, 21.3(cos122 i sin 122)
EXAMPLE 10
3. Given z 6 4i . State z in the form of rei
r z (modulus, z )
z = 62 42
= 36 16
= 52
= 7.21
Argument, = tan1 4
6
= 33.69
Since z is in Quadrant 4,
= 360 33.69= 326.31 (convert to radian)
=5.695rad
z rei 7.21e5.695i
= 33.69
Z(6,-4)
93
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 10
Express for the following complex numbers in exponential form
1. a 6i 10
Ans: 11.7e5.742i
2. r 11 52i
Ans: 53.2e1.36i
3. p 32275
Ans: 32e 4.8i
4. x 38(cos86 i sin 86)
Ans: 38e1.5i
94
[CHAPTER 4: COMPLEX NUMBER]
EXAMPLE 11
If z 245 ,express z in Cartesian form
Firstly, write z in trigonometric form:
z = 2 cos 45 i sin 45
= 2 0.7071 i0.7071
= 1.4142 1.4142i - Cartesian form, a bi
LET’S PRACTICE 11
1. State the following complex number in the form of polar and exponent.
z 42(cos 56 i sin 56)
Ans:
23.49 34.82i
2. y 34e1.48i
Ans: 30.83 33.86i
3. y 28130
Ans: 18 21.45i
95
[CHAPTER 4: COMPLEX NUMBER]
4.6 MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS IN POLAR
FORM
Complex numbers in polar form are especially easy to multiply and divide. The rules are:
i. Multiplication rule: To form the product, multiply the magnitudes and add the
angles.
ii. Division rule: To form the quotient, divide the magnitudes and subtract the angles.
EXAMPLE 12
1. Given z1 335 and z2 547 . Calculate:
a. z1 z2
SOLUTION:
= 335 547
= 3 5(35 47)
= 1582
b. z2
z1
SOLUTION:
= 547
335
= 5 47 35
3
= 1.6712
2. Given a 414 , b 6 71.5 , c 745 . Solve:
a. a b c
SOLUTION:
414 6 71.5 745
(4 6 7)(14 71.5 45)
168 12.5
96
[CHAPTER 4: COMPLEX NUMBER]
b. a c
b
SOLUTION:
414 745
6 71.5
4 714 (71.5) 45
6
4.67130.5
c. bc
a
SOLUTION:
6 75 745
414
= 6 7 75 45 14
4
10.5 44
d. c 2
ab
SOLUTION:
(745) 2
414 6 71.5
72 2 45
4 6(14 71.5)
49 (90 61)
24
2.04151
97