[CHAPTER 3: TRIGONOMETRY]
EXAMPLE 5
Find the value of for sin = 0.5870, where 0° ≤ ≤ 360°
SOLUTION:
sin 0.5870 Sin is positive value QUADRANT 1:
2 (Quadrant 1 and 2)
2 = 35.94°
2 = sin 0.5870
= 2(35.94°) = 71.89°
= 35.94° QUADRANT 2:
2
2 = 180° − 35.94° = 144.06°
= 2(144.06°) = 288.12°
Therefore;
= . ° & . °
LET’S PRACTICE 5
Find the values of in the range 0° ≤ ≤ 360° for each of the following,
a. cos 1 0 .7384
2
Ans: 275.2
b. cos2 0.4756
Ans: 30.8 , 149.2 , 210.8 & 329.2
45
[CHAPTER 3: TRIGONOMETRY]
3.4 TRIGONOMETRIC EQUATIONS AND IDENTITIES
1. Basic Identities
Sin Tan
Cos
2. Trigonometric Identities
cos2 sin2 1
1 tan2 sec2
cot2 1 cosec2
3. Angle Sum and Difference Identities
sin sin cos cos sin
cos cos cos sin sin
tan tan tan
1 tan tan
4. Double Angle Identities
sin 2A 2sin A cos A
cos 2 A cos2 A sin 2 A
cos 2A 1 2sin 2 A
cos 2A 2 cos2 A 1
tan 2 A 1 2 tan A
tan 2A
46
[CHAPTER 3: TRIGONOMETRY]
EXAMPLE 6
1. Solve + 2 = 3, where 0° ≤ ≤ 360°
SOLUTION:
sin 2 3 Sine positive Quadrant 1:
sin 1 (Quadrant 1 and 2) = 90°
sin 1 1
90 Reference Angle Quadrant 2:
x = 180° − 90° = 90°
Therefore;
= °
2. Solve 5 − 2 = 0, where 0° ≤ ≤ 360°.
SOLUTION:
5 − 2 = 0 Quadrant 1:
= 21.80°
5 2
− = 0 Quadrant 3:
= 180° + 21.80° = 201.80°
5 − 2 = 0 Tangent is positive
(Quadrant 1 and 3)
2
= 5 2
5
= = 21.80°
Therefore;
= . ° & . °
LET’S PRACTICE 6
1. Solve each of the following equations for 0° ≤ ≤ 360°.
a. 4sin 3cos
Ans: 36.87 & 216.87
47
[CHAPTER 3: TRIGONOMETRY]
b. sin cos 0
Ans: 135 & 315
c. 4 tan 3sec
Ans: 48.59 & 131.4
d. 2 tan cos ec 3
Ans: 48.19 & 311.81
2. Solve each of the following equations for 0° ≤ ≤ 360°.
a. 2 cos 2 x cos x
Ans: 60 , 90 , 270 & 300
b. 5sin x cos x sin x
Ans: 78.46 & 281.54
c. sin 2 x sin x 2 0
d. 2 tan 2 x sec x tan x Ans: 270
Ans: 30 & 150
48
[CHAPTER 3: TRIGONOMETRY]
EXAMPLE 7
Solve the equation 2 cos 2 3 cos 1 0 for the values of in the range 0° ≤ ≤ 360°.
SOLUTION:
2 cos2 3cos 1 0
2cos 1cos 1 0
2 cos 1 0
cos 1 Cos positive Quadrant 1:
2 (Quadrant 1 and 4) θ = 60°
Quadrant 4:
cos 1 1 Reference angle θ = 360° − 60° = 300°
2
60
cos 1 0 Cos positive Quadrant 1:
cos 1 (Quadrant 1 and 4) = 0°
cos 1 1
0 Reference angle Quadrant 4:
= 360° − 0° = 360°
Therefore;
= 0°, 60°, 300° & 360°
49
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 7
1. Solve the equation 1 2sin 4 cos 2 0 for values of in the range of
0° ≤ ≤ 360°.
Ans: 48.59 , 131.41 , 210 & 330
2. Solve each of the following equations for values of in the range 0° ≤ ≤ 360°.
a. 8 sin 2 2 cos 5 0
Ans: 41.41 , 120 , 240 & 318.59
b. 7 sin 2 cos 2 5 sin
Ans: 19.47 , 30 , 150 & 160.53
c. 3 cos 2 cot
Ans: 41.81 & 138.19
50
[CHAPTER 3: TRIGONOMETRY]
3.5 SINE AND COSINE RULES
3.5.1 SINE RULE
Sine Rule:
a A b c
sin sin B sin C
sin A sin B sin C
a b c
EXAMPLE 8
a. Find the length of AC. SOLUTION:
ABC 180 75 40
ABC 65
AC 8.2
sin 65 sin 40
AC 8.2 sin 65 11.56cm
sin 40
b. Solve the triangle with the following given dimensions:
a 43cm , b 75 cm and B 30 0
SOLUTION:
sin A sin B
a b
sin A sin 30
43 75
A sin 1 43sin 30 16.66
75
51
[CHAPTER 3: TRIGONOMETRY]
C 180 0 30 0 16 .66 0 133 .34
c b
sin C sin B
c 75
sin133.34 sin 30
c 75 sin 133.34 109.09cm
sin 30
LET’S PRACTICE 8
1
Find the length of AC Ans: 4.52cm
2.
Find ABC
Ans: 31.69
52
[CHAPTER 3: TRIGONOMETRY]
3.
Find ABC and the length of AB Ans: 11.82 & 10.02cm
4.
Find the length of AC and BC. Ans: 5.19cm & 6.35cm
5. Solve the triangles with the given parts:
a) = 45.7 , = 68.20°, = 47°
b) = 4.608 , = 3.207 , A = 18.23°
c) = 742 , B = 53°, C = 3.5°
a) C = 64.8°, = 36 , = 44.54
Ans: b) B = 12.58°, C = 149.19°, c = 7.545
c) A = 123.5°, = 774.75 , = 56.72
53
3.5.2 COSINE RULE [CHAPTER 3: TRIGONOMETRY]
Cosine Rule:
a2 b2 c2 2bccos A
b2 a2 c2 2accos B
c2 a2 b2 2abcosC
EXAMPLE 9
1. Given = 16.4 , = 11.8 and SOLUTION:
∠C = 67°. Find the length of .
c2 a2 b2 2abcosC
c2 16.42 11.82 216.411.8cos670
c2 256.97
c 256.97
c 16.03cm
2. Solve the triangle given that a 6.00cm , b 7.56cm and ∠C = 54°.
SOLUTION:
c2 a2 b2 2abcosC
c2 62 7.562 267.56cos540
c 6.31cm
For A , use the law of sines:
sin A sin C
a c
sin A sin540
6 6.31
sin A 6 sin 540
6.31
A 50.290
= 180° − (50.29° + 54°) = . °
54
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 9
1. Given = 7 , = 5 and ∠C =
60°. Find the length of .
Ans: 6.24cm
2. Given = 7 , = 5 and = 3 .
Find B .
3. Given = 15 , = 12 and = Ans: 38.21°
14 . Ans: 69.99°
Find A .
55
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 10
1. Given ∠ABC = 64°. Find:
a. A
b. length of
Ans: 74.05°, 6.4
2. Given the length of = 6.2 , =
4.6 and ∠K = 52°. Find:
a. the angle of ∠L
b. length of
Ans: 92.22° , 7.86
3. Given the length of = 9.1 , =
5.9 and = 10.2 . Find:
a. P
b. Q
Ans: 35.01°, 62.25°
56
[CHAPTER 3: TRIGONOMETRY]
3.6 AREA OF TRIANGLE
Area of triangle ABC:
1 ab sin C
2
1 bc sin A
2
1 ac sin B
2
EXAMPLE 10
Given = 15 , = 9 and SOLUTION:
∠ACB = 64°. Find the area of triangle.
Area of ABC;
1 159sin 640
2
60.67cm2
2. Given = 6 , = 5 and SOLUTION:
∠ABC = 49°. Find the area of triangle
. 56
sin = sin 49°
5 sin 49°
sin = 6 = 0.6289
A = sin 0.6289 = 38.97°
C = 180° − 49° − 38.97° = 92.03°
Area of ABC;
= 1 (5)(6) sin 92.03° = 14.99
2
57
[CHAPTER 3: TRIGONOMETRY]
LET’S PRACTICE 11
1. Given = 8 , = 12
and ∠DFE = 126°. Find the area
of triangle .
2. Given = 11 , = 14.5 Ans: 38.83cm2
and ∠B = 48°. Find the area of Ans: 64.18cm2
triangle.
3. Given = 7 , = 9 and
= 6 . Find the area of
triangle .
Ans: 20.98cm2
58
[CHAPTER 4: COMPLEX NUMBER]
COMPLEX NUMBER
OBJECTIVES:
At the end of this topic, students should be able to understand about:
i. Identify real part and imaginary part
ii. Recognize that i 1
iii. Perform the operations of complex number
iv. Represent complex number using Argand Diagram
v. Complex number in other form
4.1 INTRODUCTION OF COMPLEX NUMBER
Introduction including:
Complex Number in general form -
Definition of 1
Real part
Imaginary part
REAL NUMBER the numbers like 1, 10.158, -0.34, 2/5, 3 , or any number
when squared give a negative result
IMAGINARY
NUMBER
The "unit" imaginary number (like 1 for Real Numbers) is i, which is the square root
of −1
Because when we square i we get −1; i2 = −1
And we keep that little "i" there to remind us we need to multiply by 1
59
[CHAPTER 4: COMPLEX NUMBER]
4.1.1 THE CONCEPT OF A COMPLEX NUMBER
A Complex Number is a combination of a Real Number and an Imaginary Number.
General form of complex number written as:
a + bi
Examples of a (real number):-
1 10.15 -0.3462 2 3
5
Examples of b (Imaginary Numbers):-
3i 1.04i −2.8i 3i ( 2)i 1998i
4
Examples of complex number: 0.8 − 2.2i −2 + i 2 + 1 i
1 + i 39 + 3i 2
Complex Number Real Part Imaginary Part Purely Real
2 Purely Imaginary
3 + 2i 3
5 5 0
−6i 0 −6
A Complex Number consists of real part and imaginary
part. But either part can be 0.
60
[CHAPTER 4: COMPLEX NUMBER]
EXAMPLE 1
Simplify: 3. i9
1. 4 4. 2 3
2. 7i i 2
SOLUTION:
1. 4 4(1) 4i 2 2i
2. 7i i2 7i3 7i(1) 7i
3. i9 i 2 i 2 i 2 i 2 i 1 1 1 1 i
4. 2 3 2 3 1 2 3i
LET’S PRACTICE 1 3. −√−64
Simplify:
1. 2i 3i
2. 4 2 4. √−98
Ans: 6 , 4 2i , −8 , 9.9
61
[CHAPTER 4: COMPLEX NUMBER]
4.2 THE OPERATIONS OF COMPLEX NUMBERS
4.2.1 ADDITION
To add two or more complex numbers, we add each part separately.
Complex Number 2
Imaginary part
a bi c di a c b d i
Complex Number 1 Real part
EXAMPLE 2
a. Perform the addition of 3 2i and 1 7i
SOLUTION:
( 3 2i ) + (1 7i )
REAL PART 3 1 4
IMAGINARY PART 2 7i 9i
ANSWER
4 9i
b. Perform the addition of 3 5i and 4 3i
SOLUTION:
(3 5i) + (4 3i)
REAL PART 3 4 7
IMAGINARY PART 5 3i 2i
ANSWER
7 2i
62
[CHAPTER 4: COMPLEX NUMBER] Ans: 6 10i
LET’S PRACTICE 2 Ans: 1 15i
Solve the following operation of complex number. Ans: 4 2i
Ans: 2 9i
a. 5 2i 1 8i Ans: 9 3i
Ans: 12 24i
b. 3 6i 2 9i Ans: 47 68i
Ans: 93 29i
c. 8i 1 5 6i
63
d. 7 5i 5 4i
e. 2 3i 7 6i
f. 24 10i 12 14i
g.. 30 52i 17 16i
h. 72 14i 21 43i
[CHAPTER 4: COMPLEX NUMBER]
4.2.2 SUBSTRACTION
To subtract two or more complex numbers, we do same steps as for addition.
Subtract each part separately.
Complex Number 2 Imaginary part
a bi c di a c b d i
Complex Number 1 Real part
EXAMPLE 3
a. Subtract 7 3i and 1 7i
SOLUTION:
( 7 3i ) - (1 7i )
REAL PART 7 1 6
3 7i 4i
IMAGINARY PART
6 4i
ANSWER
b. Perform the subtraction (5 + 3 ) − (3 + 2 )
SOLUTION:
5 3i 3 2i 5 3 2
3 2i i
REAL PART
IMAGINARY PART 2i
ANSWER
64
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 3
Solve the following operation of complex number.
a. 7 9i 5 2i
b. 8 2i 1 3i Ans: −12 + 7i
Ans: 7 i
c. 8i 6 5 1i
Ans: 11 9i
d. 2 6i 4 9i Ans: 6 3i
Ans: 36 + 44i
e. 30 4i 6 48i Ans: 74 27i
Ans: 25 12i
f. 70 6i 4 21i Ans: 104 36i
g. 32i 11 14 20i 65
h. 91 27i 13 9i
[CHAPTER 4: COMPLEX NUMBER]
4.2.3 MULTIPLICATION
To multiply complex numbers, each part of the first complex number gets multiplied
by each part of the second complex number.
Just use "FOIL", which stands for "Firsts, Outers, Inners, Lasts"
a bic di ac adi bci bdi2
(a bi)(c di) (ac bd) (ad bc)i
EXAMPLE 4 Remember:- i 2 1
Remember:- i 2 1
a. Solve the equation 3 2i1 7i
SOLUTION:
3 2i1 7i (31) (3 7i) (2i 1) (2i 7i)
(3) (21i) (2i) (14i 2 )
(3) (21i) (2i) (14)(1)
(3) (21i) (2i) (14)
11 23i
b. Solve the equation 1 i2
SOLUTION:
1 i1 i (11) (1 i) (1 i) (i 2 )
(1) (2i) (1)
= 2
66
[CHAPTER 4: COMPLEX NUMBER]
c. Solve the equation −9(4 − 2 ) Remember:- i 2 1
SOLUTION:
−9(4 − 2 ) = (−9 × 4) + [(−9) × (−2 )]
= −38 + 18
d. Solve the equation 3 (2 + 6 )
SOLUTION:
3 (2 + 6 ) = (3 × 2) + (3 × 6 )
= 6 + 18
= 6 + 18(−1)
= −18 + 6
LET’S PRACTICE 4
Solve the following operation of complex number.
a. 8i 6 5 1i
Ans: 22 46i
b. 8 2i1 3i
c. 7 9i5 2i Ans: 2 26i
d. 2 6i 4 9i Ans: 53 30i
Ans: 44 6i
67
[CHAPTER 4: COMPLEX NUMBER]
4.2.4 DIVISION
To perform the division of complex numbers, we use the conjugate.
For example,
a bi , the conjugate of the bottom number will be used.
c di
Bottom number is c di , so the conjugate will be c di . The sign for imaginary part
will be changed or the conjugate can be written as c di c di .
Then the division of a bi when using conjugate is written as a bi c di
c di c di c di
Hence, a bi c di = a bi c di
c di c di c di c di
=
ac adi bci bdi2 ; i 2 1
cc cdi cdi ddi2
= ac bd bc ad i
c2 d 2
EXAMPLE 5
1. Do the division 2 3i
4 5i
SOLUTION: EXPLANATION:
a. Multiply top and bottom by the conjugate of
2 3i 4 5i
4 5i 4 5i 4 5i
b. Remember that i 2 1
8 10i 12i 15i 2 2 c. Add like terms and notice how on the
16 20i 20i 25i
bottom 20i 20i cancels out.
8 10i 12i 15 d. Lastly we should put the answer back into
16 20i 20i 25
a bi form
7 22i
41
7 22 i
41 41
68
[CHAPTER 4: COMPLEX NUMBER]
2. Write 4 3i in the standard form + . 7 22 i
2 5i 41 41
SOLUTION:
4 + 3 4 + 3 2 − 5
2 + 5 = 2 + 5 × 2 − 5
8 − 20 + 6 − 15
= 4 − 10 + 10 − 25
8 − 14 − 15(−1)
= 4 − 25(−1)
8 + 15 − 14
= 4 + 25
23 − 14
= 29
23 14
= 29 − 29
LET’S PRACTICE 5
Solve the following operation of complex number.
a. ( )
()
Ans:
b. 1 3i
8 2i
Ans: 2 26i
68
5 2i
c. 7 9i
Ans:
d. 4 9i
2 6i
Ans: 46 42i
40
69
[CHAPTER 4: COMPLEX NUMBER]
4.3 CONJUGATE OF A COMPLEX NUMBERS
A conjugate is where we change the sign in the middle. Refer the diagram below.
In other word, it is obtained by changing the sign of the imaginary part.
A conjugate is often written with a bar over it.
Conjugate solving Explanation
5 3i = 5 3i change the sign of the imaginary part
Let z 3 4i ;
then the conjugate of z represented by
z 3 4i .
If z 5 2i , then its conjugate z 5 2i .
The conjugate is used to solve the division of complex numbers.
It is important to ease the complex number with denominator.
The trick is to multiply both top and bottom by the conjugate of the bottom.
4.3.1 THE PROPERTIES OF THE COMPLEX CONJUGATE
For any complex numbers , , , the algebraic properties of the conjugate
operation:
+ = + − = −
= ∙
≠ 0
= ,
70
[CHAPTER 4: COMPLEX NUMBER]
EXAMPLE 6
Given that = 2 − i and = 3 + 3i. Write each expression in the standard form a + bi
a. −
b. +
SOLUTION:
a. = 3 − 3
Therefore; − = (2 − ) − (3 − 3 )
− = 2 − − 3 + 3
− = − +
b. + = 2 − + 3 + 3
+ = 5 + 2
Therefore; + = −
LET’S PRACTICE 6
Given that z = 8 + 3i and w = 3 − 4i. Write each expression in the standard form a + bi.
a. + ̅
Ans: 16
b. −
Ans: −8
c. ̅ +
Ans: 11 +
71
[CHAPTER 4: COMPLEX NUMBER]
4.4 GRAPHICAL REPRESENTATION OF A COMPLEX NUMBER THROUGH ARGAND
DIAGRAM
Complex number can be represented by argand diagram.
If a complex number,
z a bi ; a → real part
b → imaginary part.
4.4.1 ARGAND’S DIAGRAM TO REPRESENT A COMPLEX NUMBER
Based on the following diagram,
z a bi is the reflection image of z a bi
Where;
a bi (a bi) 2a
and
(a bi) (a bi) 2bi
EXAMPLE 7
1. Show the following complex number on Argands Diagram.
a. x yi b. 3 5i
c. 4 7i d. 2 5i
72
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 7
Represent the following complex number on Argand Diagram
a. 4 9i
Ans:
b. 3 6i
Ans:
c. 7 2i
Ans:
d. 8 5i
Ans:
4.4.2 MODULUS AND ARGUMENT
Refer to argand diagram below: Modulus of the complex number z, donated by
z where it is a positive value which is equal to
the length of the segment OZ.
| | = +
Argument of z is angle ; tan y .
x
Hence, the argument, donated by;
= tan
73
[CHAPTER 4: COMPLEX NUMBER]
EXAMPLE 8
Find the modulus and the argument for the following complex numbers. Then show them on
argand diagram.
a. z 3 4i b. z 4 7i
Modulus, z = 32 42 Modulus, z = 42 72
= 9 16
= 25 = 16 49
=5 = 65
= 8.06
Argument, θ = tan1 4
3 Argument, θ = tan1 7
4
= 53.13º
= 60.25
Argand diagram:
θ in Quadrant 4;
360 60.25 = 299.75º
Argand diagram:
θ
θ
74
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 8
Find the modulus and the argument for the following complex numbers.
1. z 8 4i
Ans: z 8.94, 333.43
2. z 6 9i
Ans: z 10.8 , 56.3
3. z 10i 12
Ans: z 15.62 , 320.19
3. z 10i 12
Ans: z 15.62 , 320.19
4.5 COMPLEX NUMBER IN OTHER FORM
Complex number can be expressed as shown in the following table.
Complex Number The form of
r a bi Cartesian
r Polar
can be in degree( )
r cos i sin Trigonometric
can be in degree( )
rei Exponent
must be in radian (rad)
75
[CHAPTER 4: COMPLEX NUMBER]
4.5.1 COMPLEX NUMBER IN POLAR FORM
EXAMPLE 9
Given a complex number z 4 9i . State z in polar form, z
SOLUTION: 42 92
Modulus; z
z 9.85
Argument; = tan
9
= tan 4
= 66.04°
In Polar Form; | |∠ = . ∠ . °
LET’S PRACTICE 9
Express for the following complex numbers in polar form
1. y 9 5i
Ans: 10.333.1
2. p 12 7i
Ans:13.8930.26
3. r 9(cos120 i sin120)
4. x 6.4e1.12i Ans: 9120
Ans: 6.464.17
76
[CHAPTER 4: COMPLEX NUMBER]
4.5.2 COMPLEX NUMBER IN TRIGONOMETRIC FORM
EXAMPLE 10
If z 530, write z in trigonometric form { r cos i sin }
SOLUTION:
z 530→ in polar form ( r )
z 5 cos30 i sin 30
LET’S PRACTICE 10
Express for the following complex numbers in trigonometric form
1. k 7 10i
Ans: 12.2(cos 305 i sin 305)
2. p 9 12i
3. y 40270 Ans: 15(cos 53.13 i sin 53.13)
4. x 21.3e 2.13i Ans: 40(cos 270 i sin 270)
Ans:, 21.3(cos122 i sin122)
77
[CHAPTER 4: COMPLEX NUMBER]
4.5.3 COMPLEX NUMBER IN EXPONENTIAL FORM
EXAMPLE 11
Given z 6 4i . State z in the form of rei
SOLUTION:
Modulus; | | = 6 + (−4) = √52
| | = 7.21
Argument; = tan
4
= tan 6
= 33.69°
Since is in Quadrant 4;
= 360° − 33.69° = 326.31°
= 326.31° × = 5.695
180°
In exponential form; = = . .
LET’S PRACTICE 11
Express for the following complex numbers in exponential form.
1. a 6i 10
Ans: 11.7e5.742i
78
[CHAPTER 4: COMPLEX NUMBER]
2. r 11 52i
3. p 32275 Ans: 53.2e1.36i
Ans: 32e 4.8i
4. x 38(cos86 i sin 86) Ans: 38e1.5i
4.5.4 COMPLEX NUMBER IN CARTESIAN FORM
EXAMPLE 12
If z 245, express z in Cartesian form.
SOLUTION:
Write z in trigonometric form:
z = 2 cos 45 i sin 45
In Cartesian form:
= 2(0.7071 + 0.7071 )
= . + .
79
[CHAPTER 4: COMPLEX NUMBER]
LET’S PRACTICE 12
Express for the following complex numbers in Cartesian form.
a. z 42(cos 56 i sin 56)
Ans: 23.49 34.82i
b. y 34e1.48i
Ans: 30.83 33.86i
c. y 28130
Ans: 18 21.45i
4.6 MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS IN POLAR
FORM
Complex numbers in polar form are especially easy to multiply and divide. The rules
are:
i. Multiplication rule: To form the product, multiply the magnitudes and add
the angles.
ii. Division rule: To form the quotient, divide the magnitudes and subtract the
angles.
EXAMPLE 13
1. Given z1 335 and z2 547 . Calculate:
a. ×
SOLUTION:
× = (3∠35°)(5∠47°)
× = (3 × 5)∠(35° + 47°)
× = 15∠82°
80
[CHAPTER 4: COMPLEX NUMBER]
b.
SOLUTION:
= ∠ °°b
∠
= 5 ∠(47° − 35°)
3
= 1.67∠12°
2. Given a 414 , b 6 71.5 , c 745 . Solve:
a. a b c
SOLUTION:
a b c 414 6 71.5 745
a b c (4 6 7)(14 71.5 45)
a b c 168 12.5
b. a c
b
SOLUTION:
a c 414 745
b 6 71.5
a c 4 714 (71.5) 45
b 6
a c 4.67130.5
b
81
[CHAPTER 4: COMPLEX NUMBER]
c. bc
a
SOLUTION:
b c 6 75 745
a 414
b c 6 7 75 45 14
a 4
b c 10.5 44
a
d. c2
ab
SOLUTION:
c2 (745) 2
ab 414 6 71.5
c2 4 72 2 45
ab 6(14 71.5)
c2 49 (90 61)
ab 24
c2 2.04151
ab
LET’S PRACTICE 13
1. Solve the following expression in an exponential form.
25(cos180 i sin180) 8(cos12 i sin 12)
20(cos 50 i sin 50)
Ans: 10e 2.48i
82
[CHAPTER 4: COMPLEX NUMBER]
2. Given that Z1 8(cos34 i sin 34) and Z2 6040 . Solve Z2 in trigonometry form
Z1
Ans: 7.5(cos 6 i sin 6)
3. Given z1 3 2i and z2 3(cos30 i sin 30)
a. Calculate z1 z2 and express the answer in the form of a bi and exponential
form.
Ans: 4.8 9.7i & 10.8e1.11i
b. Calculate z1 and express the answer in the form of a bi and exponential form.
z2
Ans: 1.2 0.077i & 1.2e0.064i
4. Given z1 8145 , z2 2460
a. Calculate z1 z2 and express the answer in the form of a bi
Ans: 174 81.14i
b. State 2z2 in trigonometric form. Illustrate the answer on Argand diagram.
z1
Ans: 6 cos 850 i sin 850
83
[CHAPTER 5: MATRIX]
MATRIX
OBJECTIVES:
At the end of this topic, students should be able to understand about:
i. matrix definition
ii. dimension or order of matrix
iii. types of matrix
iv. operation of matrix (addition, subtraction, multiplication and division)
v. simultaneous equation using matrix (inverse matrix method and
Cramer’s rule)
5.1 INTRODUCTION OF MATRIX
A matrix is an ordered rectangular array of numbers or functions.
The numbers or functions are called the elements or the entries of the matrices.
The matrices are denoting by capital letters.
A matrix is a rectangular arrangement of numbers in
rows and columns.
Figure 1
Referring on Figure 1 above;
Its dimension are 2 3
2 rows and 3 columns
The entries of the matrices are 2,5,10,4,19,4
84
[CHAPTER 5: MATRIX]
MATRIX NOTATION
In order to identify an entry in a matrix, we simply write a subscript of the respective
entry’s row followed by the column.
In general, the matrices can be denoted by as in Figure 2.
Figure 2
- Each aij is called an element of the matrices (or an entry of the matrices).
- This denotes the element in row i and column j.
- The entries of the matrices are organized in horizontal rows and vertical
columns.
DIMENSION OR ORDER OF A MATRIX
The number of ROWS in matrix is represented with ‘m, and the number of
COLUMNS is represented with ‘n’.
Hence the matrices can be called (m x n) order matrices.
The numbers m and n are called dimensions/ order/ size of the matrices.
Example:
MATRICES SIZE/ ORDER
A 1 1 0 4 1 4
2 1 - A row & 4 columns
B 3 1
3 2
0 4
- 3 rows & 2 columns
85
[CHAPTER 5: MATRIX]
EXAMPLE 1
34 5 31
A 22 15
55
52 13 9
i. What are the dimensions of a matrix above?
ii. Identify entry A23
SOLUTION:
i. Dimension of a matrix; 33
ii. 55
LET’S PRACTICE 1
2 5 14 23 9
1. A 4 19
4 34 9
41 5 30 1 6
i. What are dimension of A?
ii. Identify entry A34
iii. Identify entry A12
Ans: 3 5 , 1, 5
12 7 21 31 11
27 19
2. V 45 2 14 71 26
15 36
3 13 55 34 15
4
i. What are the dimensions of V above?
ii. Identify the entry V14
iii. What is the matrices notations to donate the entry 15
Ans: 4 5, 31, V32 and V45
86
[CHAPTER 5: MATRIX]
TYPES OF MATRIX
a. RECTANGULAR MATRIX
A matrix in which number of rows is not 1 2 3
equal to number of columns. 3 1
A 4 2 2
3
1 2 3
b. ROW MATRIX c. COLUMN MATRIX d. SQUARE MATRIX
A matrix with single A matrix with A matrix with equal
row and any number single column and number of rows and
of columns. any number of columns.
A 1 2 3 4 5 rows. m n
1 1 2 1
2 A 2 1 2
A 3
1 2 1
4
e. DIAGONAL MATRIX f. SCALAR MATRIX g. ZERO MATRIX
Is a square matrix in A diagonal matrix A matrix in which every
which all the in which all the element is zero.
elements except diagonal elements 0 0 0
those on the leading are equal. A 0 0 0
diagonal are zero.
4 0 0 0 0 0
2 0 0 A 0 4 0
A 0 5 0
0 0 4
0 0 7
h. IDENTITY MATRIX /UNIT MATRIX i. TRANPOSE MATRIX
When the diagonal elements A matrix which is formed by turning
are one and nondiagonal all the rows of a given matrix into
elements are zero. columns and vice versa.
A unit matrix is always a The transpose of matrix A is written
square matrix.
1 0 0 as AT
A 0 1 0
0 0 1 1 2 3T 1 4
4 5 6 2 5
3 6
87
[CHAPTER 5: MATRIX]
5.2 OPERATION OF MATRIX
Addition
Subtraction
Multiplication
- By scalar
- By matrices
5.2.1 ADDITION
The two matrices must be the same size.
The rows must match in size
The columns must match in size
Add the numbers in the matching positions.
EXAMPLE 2
These are the calculations:
3 8 4 0 7 8 347 80 8
4 6 1 9 5 3 41 5
6 9 3
5.2.2 SUBTRACTING
The two matrices must be the same size.
The rows must match in size
The columns must match in size
Subtract the numbers in the matching positions.
EXAMPLE 3
These are the calculations:
3 8 4 0 1 8 3 4 1 80 8
4 6 1 9 15 4 1 3
3 6 9 15
88
[CHAPTER 5: MATRIX]
LET’S PRACTICE 2
1. Find 2 3 1 5
4 2
2 3
Ans: 1 8
1
0
2. If A 2 3 and B 1 5 . Find A B.
4 2 3 2
Ans: 3 2
7 4
3. If A 3 5 4 and B 1 4 2 . Find A B
1 4 6 5 2 3
Ans: 2 1 6
6 2 9
4. If A 3 5 4 and B 1 4 2 . Find A B
1 4 6 5 2 3
Ans: 4 9 2
4 6 3
89
[CHAPTER 5: MATRIX]
5.2.3 MULTIPLICATION
MULTIPLICATION BY SCALAR
To multiply a matrix by a single number is easy.
EXAMPLE 4
These are the calculations:
2 4 0 8 0 24 8 20 0
1 9 2 18 21 2
2 9 18
MULTIPLYING A MATRIX BY ANOTHER MATRIX
To multiply a matrix by another matrix, we need to do the “dot product”.
EXAMPLE 5
The “dot product” is multiply matching members, then sum up:
First row, first column:
1,2,3 7,9,11 58 1(7) + 2(9) + 3(11) = 58
90
[CHAPTER 5: MATRIX]
First row, second columns: 1(8) + 2(10) + 3(12) = 64
4(7) + 5(9) + 6(11) = 139
1,2,3 8,10,12 64 4(8) + 5(10) + 6(12) = 154
Second rows, first column:
4,5,6 7,9,11 139
Second rows, second columns:
4,5,6 8,10,12 154
THE ANSWER:
1 2 3 7 8 58 64
4 5 6 10 139 154
9 12
11
REMEMBER
In arithmetic:
3 5 5 3 [Commutative Law]
But this is NOT generally true for matrices (matrix multiplication is not
commutative).
AB BA
91
[CHAPTER 5: MATRIX]
EXAMPLE 6
Given A 1 2 and B 2 0 . Prove that AB BA .
3 4 1 2
SOLUTION:
A B 1 2 2 0
3 4 1 2
A B 4 4
10 8
The answer is
B A 2 0 1 2 DIFFERENT
1 2 3 4
[PROVED]
B A 2 4
7 10
LET’S PRACTICE 3
1. Given C 1 2 0 . Find 2C
0 1 3
Ans: 2 4 0
0 2 6
2. If A 2 0 1 Find 5A (3A)
1 3 2
.
Ans: 4 0 2
2 6 4
3. Given A 3 1 and B 2 3 . Find AB
4 2 1 5
Ans: 7 14
10 22
92
[CHAPTER 5: MATRIX]
X 3 1 Y 2 4
2 5 3 1 . Find XY .
4. If and
Ans: 3 11
19 13
3 1 2 2 0
2 4 0 4 . Find AB
5. If A and B 1 2
3
Ans: 1 0
8 16
2 0 1 5 1 2
1
6. If A 3 5 2 and B 0 4 . Find AB
4 1 4 2 3 3
8 5 7
Ans: 14 3 20
13 16 24
3 2 5 2 1 0
3 2 . Find AB
7. If A 0 1 6 and B 5
4 2 1 1 4 2
5 7 6
19 10
Ans: 3
3 10 2
93
[CHAPTER 5: MATRIX]
5.3 DETERMINANT
DETERMINANT OF A MATRIX
Determinant of a matrix is a special number that can be calculated from a square
matrix.
The symbol for determinant is two vertical lines either side.
The determinant of a matrix may be negative or positive.
Example:
A - means the determinant of the matrix A
CALCULATING THE DETERMINANT
First of all the matrices must be square.
have the same number of rows as columns.
i. FOR A 2 2 MATRIX
For a 2 2 matrix (2 rows and 2 columns)
Formula:
A a b The determinant is;
c d A ad bc
“BUTTERFLY” rule for matrix 2 2
94