The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Catalytic Cracking of a Gas Oil Derived from Eastern Canadian Oil Shale S. H. Ng Synthetic Fuels Research Laboratory, CANMET Energy, Mines and Resources Canada

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2017-01-11 05:00:05

CATALYTIC CRACKING OF A GAS OIL DERIVED FROM EASTERN ...

Catalytic Cracking of a Gas Oil Derived from Eastern Canadian Oil Shale S. H. Ng Synthetic Fuels Research Laboratory, CANMET Energy, Mines and Resources Canada

C a t a l y t i c C r a c k i n g o f a Gas O i l "I
Derived from Eastern Canadian O i l Shale

S. H. Ng

S y n t h e t i c F u e l s Research L a b o r a t o r y , CANMET
Energy, Mines and Resources Canada
Ottawa, O n t a r i o , Canada K 1 A OG1

Introduction

Large o i l s h a l e d e p o s i t s have been d i s c o v e r e d i n C e n t r a l and E a s t e r n
Canada.l I n t h e p a s t few years, c o n s i d e r a b l e r e s e a r c h was conducted on E a s t e r n
o i l shales.2-5 Primary l i q u i d products from r e t o r t i n g o f o i l shales are superior
t o Canadian heavy o i l and t a r sand b i t ~ m e n . ~I n a c o n t i n u i n g e f f o r t t o e v a l u a t e
t h e p r o c e s s a b i l i t y o f t h e shale o i l produced, a c a t a l y t i c c r a c k i n g study on i t s
gas o i l f r a c t i o n was r e c e n t l y undertaken a t CANMET. T h i s paper r e p o r t s t h e
primary results.

Experimental Section

The raw s h a l e o i l was produced b y r e t o r t i n g a New Brunswick o i l shale
f r o m A l b e r t Mines n e a r Moncton, New Brunswick. The r e t o r t system i n t h e p i l o t
p l a n t has been r e p o r t e d p r e v i o ~ s l y . ~The s h a l e o i l was d i s t i l l e d under vacuum t o
g i v e t h e gas o i l f r a c t i o n which c o n s t i t u t e d 80 w t % o f t h e feed. For comparison,
a c o n v e n t i o n a l gas o i l was o b t a i n e d f r o m a r e f i n e r y which processes t h e A l b e r t a
crudes t r a n s p o r t e d t o E a s t e r n Canada t h r o u g h t h e I n t e r p r o v i n c i a l P i p e L i n e
(IPPL). The two gas o i l s were analyzed u s i n g ASTM o r o t h e r accepted methods.
The r e s u l t s a r e shown i n Tables I and 11.

Three e q u i l i b r i u m c a t a l y s t s OA-440, Nova 0 and GX-30 o b t a i n e d f r o m
Davison o f Id. R. Grace were used i n t h i s study. P r i o r t o t h e i r c h a r a c t e r i z a t i o n
and t e s t i n g , t h e c a t a l y s t s were decoked a t 590 'C f o r 3 h. S u r f a c e
c h a r a c t e r i s t i c s were determined by b o t h N Z a d s o r p t i o n - d e s o r p t i o n technique and by
mercury porosimetry. Z e o l i t e s u r f a c e areas and z e o l i t e c o n t e n t s were estimated
based on a method r e p o r t e d i n t h e l i t e r a t u r e . 6 T h e i r p h y s i c a l and chemical
p r o p e r t i e s a r e g i v e n i n Table 111.

C a t a l y t i c c r a c k i n g o f t h e gas o i l s was performed i n a m i c r o a c t i v i t y
t e s t (MAT) u n i t w h i c h was m o d i f i e d from t h e ASTM 03907 v e r s i o n . It c o n s i s t s o f a
f i x e d bed q u a r t z r e a c t o r packed w i t h 4.2 g o f c a t a l y s t heated a t 470-530 'C i n a
t h r e e - z o n e f u r n a c e . Feeds were d e l i v e r e d u s i n g a s y r i n g e pump w i t h c a t a l y s t l o i l
r a t i o varying from 2-6 while keeping the hourly weight space v e l o c i t y (WHSV)
c o n s t a n t a t 20 h-1. A f l o w o f n i t r o g e n purge gas a t 20 mL/min was m a i n t a i n e d
throughout t h e 20-min t e s t period. L i q u i d products were c o l l e c t e d i n a glass
receiver cooled i n an ice-water bath whereas the gaseous products were trapped
using water displacement. A f t e r the t e s t , both products were q u a n t i t a t i v e l y
measured b e f o r e a n a l y s i s . The amount o f coke formed on t h e spent c a t a l y s t was
a l s o d e t e r m i n e d . Conversion was c a l c u l a t e d based on t h e f r a c t i o n o f l i q u i d
product having a b o i l i n g p o i n t above 216 'C.

1237

O e n i t r o g e n a t i o n o f t h e s h a l e vacuum gas o i l (VGO) was done b y b o t h
e x t r a c t i o n i n which d i m e t h y l s u l f o x i d e (DMSO) c o n t a i n i n g 6 w t % ZN s u l p h u r i c a c i d
was used as s o l v e n t , and a d s o r p t i o n i n which an A t t a p u l g u s c l a y was used as
adsorbent.

R e s u l t s and Discussion

Table I shows t h a t t h e q u a l i t y o f t h e s h a l e VGO i s b e t t e r t h a n o r
e q u i v a l e n t t o t h a t o f t h e IPPL gas o i l except i t s n i t r o g e n c o n t e n t s a r e much
I h i g h e r . The b a s i c n i t r o g e n i s u n d e s i r a b l e i n FCC f e e d s t o c k s as i t can n e u t r a l i z e
the acid sites of the cracking catalysts resulting i n a rapid loss of
a c t i v i t y . 7 - 9 The h i g h n i t r o g e n l e v e l i s a l s o r e f l e c t e d b y t h e p o l a r s i n t h e
hydrocarbon t y p e a n a l y s i s ( T a b l e 11). P o l a r s i n t h e s h a l e o i l may a l s o i n c l u d e
oxygen compounds. I f these p o l a r s a r e c o n s i d e r e d c r a c k a b l e , t h e c o n v e r s i o n
c o n s t r a i n t s based on t h e c o m p o s i t i o n a l a n a l y s i s can be e s t i m a t e d a t 80.6 and 81.1
w t % f o r IPPL and shale VGO r e s p e c t i v e l y , assuming t h a t t h e d i a r o m a t i c s and t h e
more h i g h l y condensed s t r u c t u r e s i n c l u d i n g aromatic sulphurs cannot be converted
t o l i g h t products w i t h b o i l i n g p o i n t s l e s s t h a n 216 'C due t o t h e s t a b i l i t y o f
t h e benzene r i n g s .

F i g u r e 1 shows t h e e f f e c t s o f temperature and c a t a l y s t l o i l r a t i o (C/O)
on conversion. S i g n i f i c a n t d i f f e r e n c e s can be seen between t h e two feedstocks.
For IPPL gas o i l , t h e conversion tends t o l e v e l o f f and approaches i t s l i m i t a t
h i g h s e v e r i t y . Furthermore, i t i s l e s s s e n s i t i v e t o t h e temperature change. On
t h e o t h e r hand, f o r s h a l e VGO, t h e c o n v e r s i o n i n c r e a s e s s h a r p l y and l i n e a r l y w i t h
C/O r a t i o and i s f a r below i t s expected l i m i t even a t much h i g h e r s e v e r i t y . The
conversion i s obviously very temperature-dependent. This suggests t h a t the
catalysts were seriously poisoned during cracking by t h e basic n i t r o g e n o f shale
VGO as t h i s t y p e o f p o i s o n i n g i s m a i n l y a s u r f a c e a d s o r p t i o n phenomenon and h i g h
temperature tends t o promote d e s o r p t i o n . Between t h e two c a t a l y s t s , Nova D i s
apparently more a c t i v e i n c r a c k i n g IPPL conventional gas o i l due t o i t s h i g h e r
zeolite content. This agrees w i t h Oavison's m i c r o a c t i v i t y results (Table 111).
However, t h i s t r e n d i s r e v e r s e d f o r s h a l e VGO, w i t h OA-440 b e i n g more a c t i v e .
This suggests t h a t t h e shale o i l c o n t a i n s l a r g e r molecules which do n o t have
access t o the small pores o f t h e z e o l i t e b u t can be cracked by t h e m a t r i x o f
DA-440 which has a l a r g e r pore d i a m e t e r ( T a b l e 111). A s i m i l a r phenomenon was
also observed i n a separate cracking study which deals w i t h other nonconventional
gas o i l s i n c l u d i n g those d e r i v e d from r e s i d s , t a r sand bitumens and heavy o i l s . l 0

For IPPL gas o i l , favourable and optimum gasoline y i e l d (54 w t % ) i s
o b t a i n e d a t about 73% c o n v e r s i o n beyond which o v e r c r a c k i n g seems t o t a k e p l a c e .
The g a s o l i n e y i e l d decreases s l i g h t l y w i t h i n c r e a s e d temperature a t c o n s t a n t
conversion. Between t h e two c a t a l y s t s , OA-440 i s s l i g h t l y more s e l e c t i v e f o r
g a s o l i n e p r o d u c t i o n . T h i s does n o t n e c e s s a r i l y mean t h a t i t produces a b e t t e r
g a s o l i n e , i n terms o f h i g h e r octane number, as OA-440 i s n o t an octane-enhancing
c a t a l y s t b u t Nova D i s . I t i s known t h a t t h e dealuminated u l t r a - s t a b l e Y z e o l i t e
c a t a l y s t s USY) y i e l d h i g h e r octane g a s o l i n e b y p r o d u c i n g more o l e f i n i c
compounds,jl compared w i t h t h e r a r e e a r t h exchanged Y z e o l i t e c a t a l y s t s (REY).
For s h a l e VGO, t h e g a s o l i n e y i e l d i n c r e a s e s l i n e a r l y and monotonously w i t h
c o n v e r s i o n w i t h o u t obvious e f f e c t s o f t e m p e r a t u r e and c a t a l y s t . The e x p e r i m e n t a l
maximum g a s o l i n e y i e l d i s l e s s t h a n 30 w t % w h i c h i s unacceptably low.

The coke y i e l d s o f t h e two gas o i l s i n c r e a s e e x p o n e n t i a l l y (IPPL) o r
linearly (shale o i l ) with conversion. A t constant conversion, higher temperature

1238

f o r t h e same c a t a l y s t tends t o l o w e r t h e coke y i e l d because C / O r a t i o can be
reduced t o achieve t h e same conversion. C o n t r a r y t o t h e l i t e r a t u r e , l l Nova D

( U S Y ) y i e l d s more coke t h a n i t s c o u n t e r p a r t DA-440 ( R E Y ) i n c r a c k i n g s h a l e VGO

whereas f o r IPPL gas o i l , Nova D shows s l i g h t l y b e t t e r o r e q u i v a l e n t coke
s e l e c t i v i t y t h a n DA-440. A s i m i l a r phenomenon was a l s o observed i n a s e p a r a t e
cracking study involving other nonconventional feedstocks.10 It i s thus believed
t h a t the superiority o f USY catalysts over REY catalysts w i t h respect t o coke
s e l e c t i v i t y depends a l s o on t h e n a t u r e o f t h e feedstock.

I t has been observed t h a t a l i n e a r c o r r e l a t i o n e x i s t s between the
second-order c o n v e r s i o n (conversion/[lOO - c o n v e r s i o n ] ) and t h e coke y i e l d . The
l i n e a r r e l a t i o n s h i p i s expected based on t h e e q u a t i o n s proposed by W o l l a s t o n
e t a1.12 For IPPL gas o i l , t h e s t r a i g h t l i n e s a t d i f f e r e n t temperatures pass
through the o r i g i n i n d i c a t i n g that a l l the oke formed results from c a t a l y t i c
c r a c k i n g and i s t h e r e f o r e " c a t a l y t i c " coke.f3 However, f o r shale VGO, t h e
s t r a i g h t l i n e s i n t e r s e c t t h e x-axis a t d i f f e r e n t coke values. These values
o b t a i n e d a t 0% c o n v e r s i o n r e p r e s e n t n e i t h e r " c a t a l y t i c " coke n o r "contaminant"
coke s i n c e t h e n i c k e l and vanadium contents o f t h e c a t a l y s t s are r a t h e r l o w
(Table 111). This suggests t h a t they belong t o t h e " a d d i t i v e " coke r e s u l t i n g
from t h e b a s i c n i t r o g e n o€ t h e s h a l e gas o i l which c o n t a i n s l i t t l e Conradson

-carbon another p o s s i b l e p r e c u r s o r f o r t h e " a d d i t i v e " coke.13 The " a d d i t i v e "

coke found i s independent o f t h e c a t a l y s t t y p e and i s e s t i m a t e d a t 1.47, 1.25,

1.09 and 0.97 w t % a t 470 'C, 490 'C, 510 'C and 530 'C, r e s p e c t i v e l y .

Product d i s t r i b u t i o n f o r t h e two f e e d s t o c k s a t 50% c o n v e r s i o n i s shown
i n Table I V . It can be seen t h a t t h e s h a l e VGO produces more gases, l e s s
g a s o l i n e and much more coke compared w i t h IPPL gas o i l . The h i g h decant o i l
y i e l d (39 w t % ) f o r IPPL VGO may be m i s l e a d i n g as t h e m a j o r i t y o f i t s p r e c u r s o r
i s crackable a t h i g h e r s e v e r i t y . A t 73% conversion, t h i s value drops t o 8 w t %
r a i s i n g t h e g a s o l i n e y i e l d f r o m 35 t o 54 w t %.

Three methods have been used t o achieve h i g h e r conversion o f t h e shale
o i l . The f i r s t i s t o c r a c k with GX-30, a v e r y a c t i v e c a t a l y s t because o f i t s
higher z e o l i t e c o n t e n t . The o t h e r methods i n v o l v e upgrading o f gas o i l s by
removing some o f t h e n i t r o g e n compounds u s i n g e i t h e r DMSO/acid e x t r a c t i o n o r
A t t a p u l g u s c l a y a d s o r p t i o n . One disadvantage o f t h e r e j e c t i o n methods i s t h e
accompanying l o s s o f the hydrocarbon value. Table V shows t h e weight r e c o v e r y
and the n i t r o g e n contents o f t h e upgraded feedstocks. It i s evident t h a t t h e
c l a y method i s s u p e r i o r t o the e x t r a c t i o n technique s i n c e i t removes almost 50%
more b a s i c n i t r o g e n f o r t h e same recovery. T a b l e V I shows a comparison o f
c r a c k i n g y i e l d s o f raw and t r e a t e d f e e d s t o c k s cracked a t v a r i o u s c o n d i t i o n s w h i l e
keeping c a t a l y s t l o i l r a t i o constant at 6. For the untreated shale o i l , although
t h e use o f GX-30 r e s u l t s i n some improvement over DA-440 i n c o n v e r s i o n and
gasoline y i e l d , t h e coke y i e l d i s unacceptably high. E v i d e n t l y , DMSO r a f f i n a t e
shows b e t t e r performance t h a n t h e raw s h a l e o i l whereas t h e c l a y t r e a t e d s h a l e
o i l i s the best due t o i t s lowest basic n i t r o g e n content.

Let us consider two approaches i n f u r t h e r e v a l u a t i o n o f t h e data: one
involves cracking o f t h e raw shale o i l as a whole whereas t h e other involves the
separation o f the shale o i l i n t o two fractions p r i o r t o individual cracking under
t h e same c o n d i t i o n s . I n t h e l a t t e r case, t h e recovered f r a c t i o n c o n t a i n s l e s s
n i t r o g e n and i s t h e r e f o r e b e t t e r i n q u a l i t y whereas t h e r e j e c t e d f r a c t i o n i s
assumed, f o r s i m p l i c i t y , t o be u n c o n v e r t i b l e e i t h e r because o f i t s h i g h n i t r o g e n
l e v e l o r a r e f r a c t o r y n a t u r e . One can c a l c u l a t e t h e i r c r a c k i n g y i e l d s on a

1239

" t o t a l o i l " basis by m u l t i p l y i n g t h e y i e l d s , based on t h e recovered p o r t i o n , w i t h

t h e weight f r a c t i o n o f recovery. The r e s u l t s a r e i l l u s t r a t e d i n F i g . 2. Here,
t h e increases i n conversion and g a s o l i n e y i e l d s o f t h e t r e a t e d s h a l e o i l s over
those o f t h e u n t r e a t e d ones r e f l e c t t h e n e t poisoning e f f e c t on t h e c a t a l y s t b y
the basic nitrogen.

Based on t h e data obtained from n i t r o g e n r e j e c t i o n methods ( e x t r a c t i o n
I o r a d s o r p t i o n ) , l i n e a r c o r r e l a t i o n can be e s t a b l i s h e d between t h e c r a c k i n g

r e s u l t s , i n terms o f conversion and g a s o l i n e y i e l d , and t h e basic n i t r o g e n
c o n t e n t (1750-4600 ppm) o f MAT feeds. A c r a c k i n g s t u d y was a l s o made on t h e
blends prepared from IPPL and raw s h a l e o i l . The d a t a p o i n t s o b t a i n e d f r o m t h i s
d i l u t i o n method appear t o coincide w i t h those from r e j e c t i o n methods over the

same b a s i c n i t r o g e n range. T h i s suggests t h a t t h e r e j e c t e d p o r t i o n o f t h e raw
shale o i l would have been cracked i f t h e c a t a l y s t had not been poisoned by t h e
basic nitrogen i n the f i r s t place. Also, the basic nitrogen content o f the shale

o i l , r a t h e r than i t s compositional d i f f e r e n c e s from t h e IPPL gas o i l , i s t h e
determining factor f o r the cracking yields. Following the trends created by the
d i l u t i o n method, the shale o i l produces a cracking r e s u l t s i m i l a r t o t h a t o f IPPL

a t t h e same b a s i c n i t r o g e n l e v e l , i. e . , 72 vs 73.5 w t % i n c o n v e r s i o n and 51 v s
5 3 w t % i n g a s o l i n e yield..at 510 'C and a c a t a l y s t / o i l r a t i o o f 4.

Acknowledgement

The authors would l i k e t o thank Dr. T. de B r u i j n and Dr. J. K r i z o f
CANMET f o r many v a l u a b l e d i s c u s s i o n s and suggestions.

REFERENCES

(1) Duncan, D. C. O i l Shale (Eds. Yen, T. F.; C h i l i n g a r i a n , G. V.), 1 9 7 6 , p.19,
E l s e v i e r , New York.

( 2 ) Furimsky, E.; Synnott, J . ; Boorman, R. S.; S a l t e r , R. S. Fuel Process.

Technology, 1984, S, 293-306.

( 3 ) Boorman, R. S.; S a l i b , P. F.; G i l d e r s , R . ; Gemmell, D. E. Can. I n s t . Min.,
Proc. 3 r d Meeting, F r e d e r i c t o n , N. B. 1982.

( 4 ) Karman, D.; K r e s t a , S. PREPRINTS, D i v . o f P e t r o l . Chem., ACS, 1987, g ( l ) ,
94-96.

( 5 ) S a l i b , P. F.; Barua, S. K.; Furimsky, E. Can. J. Chem. Eng. 1986, g ( 6 ) .
1001-1007.

( 6 ) Johnson, M. F. J. C a t a l . 1978, 52, 425-431.

( 7 ) Fu, C. M.; S c h a f f e r , A. M. I n d . Eng. Chem. Prod. Res. Dev. 1985, E ( 1 ) . 68.

( 8 ) Scherzer, J.; McArthur, D. P. O i l Gas J. Oct. 27, 1986, pp 76.

( 9 ) Scherzer, J . ; McArthur, D. P. Ind. Eng. Chem. Res. 1988, ZJ(9), 1571-1576.

I ( 1 0 ) Ng, S. H. Unpublished r e s u l t s .

( 1 1 ) R i t t e r , R. E.; C r e i g h t o n , J . E.; C h i n , D. S.; R o b e r i e , T. G; Wear, C. C.
2,Catalagram, Davison, 1986,
5.

( 1 2 ) Wollaston, E. G.; H a f l i n , W. J . ; Ford, W. D; D'Souza, G. J. Hydrocarbon
Process. 1975, g ( 1 9 ) , 93.

( 1 3 ) Cimbalo, R. N.; F o s t e r , R . L.; Wachtel, S . J. O i l Gas J. 1972, s ( 2 0 ) , 112.

1240

T a b l e I. Feedstock I n s p e c t i o n Data

.....................................................................

P. .r.o.p.e.r.t.i e. .s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I.P.P.L. . . . . . . . . . . . . . . . .S.h.a.l.e. . .

"API 24.2 25.0
A n i l i n e p o i n t , 'C 93.7 80.0

Conradson carbon, w t % 0.43 0. i a
T o t a l n i t r o g e n , ppm 1150
7150

B a s i c n i t r o g e n , ppm 310 4570 'I
0.66 0.52
Total sulphur, wt % 65.0 17.3
V i s c o s i t y a t 40 'C, cSt
S i m u l a t e d d i s t i 11a t i o n , 'C

IBP 305 209

10% 369 290
50% 444 394

90% 538 489

FBP 594 536

T a b l e 111. P r o p e r t i e s o f C r a c k i n g C a t a l y s t s

.....................................................................

.P.r.o.p.e.r.t.i e. .s. . . . . . . . . . . . . . . . . . . . . . . . . . .C.I.A.-4.4.0. . . . . . . .N.o.v.a. .D. . . . . .G. X. .-3.0. . . . 'I
I
Type RE Y USY REY
BET s u r f a c e area, m2/g 75.0 95.5 107.5
43.7 66.8
Z e o l i t e s u r f a c e area, m2/g 7.3 48.4 10.8
Relative zeolite content, w t % 0.245 0.257
a. 1
Pore volume, mL/g 280 355
141 0.266 538
iAvg. p o r e d i a m e t e r , 374 400
42.1 208 33.1
V, ppm 24.42 . 351 24.39
N i , ppm 70 78
114
!Al2O3, w t % 45.3
24.28
Unit c e l l dimension,
72
Microactivity (Davison), w t %

1241

Table I V . Comparison o f Product Y i e l d s a t 50% Conversion*

Gas o i l I PPL Shale
Catalyst DA-440 DA-440

R. .e.a.c.t.o.r. .t e. m. .p.e.r.a.t.u.r.e.,. . '.C. . . . . . . . . . . . . . . .4.7.0. . . . . . . . . . . . . . . . .5.3.0. . . . . . . . .

Total dry gas, w t % 1.0 3.5

I c3 + c4, w t % 8.5 13.0

C 5 t gasoline, w t % 35.0 30.0

Light cycle oil, wt % 14.0 27.0

Decant o i l , w t % 39.0 20.5

Coke, w t % 2.6 6.6

* Extrapolated data

Recovery, w t % 100 85.3 86.1
T o t a l n i t r o g e n , ppm 7150 5618 3496
B a s i c n i t r o g e n , ppm
4570 3007 1745

Table VI. C r a c k i n g Y i e l d s ( w t % ) a t C / O = 6

________________________________________----------------------
c 5+
Shale o i l Typ. Catalyst Conver- Coke

. . . . . . . . . . . . . . . . .C. . . . . . . . . . . . . . . . . . . . . . .s.i.o.n. . . . . . . .G. .a.s.o.l.i n. e. . . . . . . . . . .

Raw 510 DA-440 45.0 25.2 6.5

DMSO t r e a t e d 510 DA-440 53.2 31.7 6.4

Clay t r e a t e d 510 DA-440 65.3 40.0 6.4

Raw 530 DA-440 47.9 26.5 6.6

Raw 530 GX-30 59.8 31.7 9.1

C l a y t r e a t e d 530 DA-440 70.0 42.5 6.4

1242

eo

50
70

60 40

CI 30

- /470. C I I 20
50
2 3 4 I
v
56 I'
s
50
t
40
3 40

1

9

c eo

.0-

v,
L

> 70
c

0

0

60

30
50

40 20
1 2 34 5 6

CataJyst/Oi I Rat i o

Figure 1. E f f e c t s of temperature and c a t a l y s t / o i l r a t i o
on conversion.

1243

I

I

I I 11 II II

12 3 4 5 6 7

40 I

' I1 I I I1 II I I

lo I 7
1234 5 6

Catalyst/Oil Ratio

Figure 2 . Conversions and g a s o l i n e y i e l d s of raw and t r e a t e d
s h a l e gas oils c a l c u l a t e d on t o t a l o i l b a s i s .

1244


Click to View FlipBook Version