The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by khaledatirah, 2019-01-06 00:31:30

TRY

TRY

PublishedinMalaysia2018by
UniversitiTeknologiMalaysia,
81310JohorBahru,
Johor,Malaysia.
http://www.utm.my/

Thisbookhasbeensubmitted totheCentreofStudiesfor
Architecture,FacultyofBuiltEnvironment,Universititeknologi
Malaysia,tofulfilltherequirementofMBES2176DesignThesis
Dissertationcourse.

Copyright©2019byNurKhaledaAtirahbintiKamarudin

Allrightsreserved.Apartfrom anyfairdealingforthepurpose
ofprivate study,research,criticism orreview aspermitted
undertheCopyrightAct,nopartofthisbookmaybeusedor
reproduced in any mannerwhatsoeverwithoutwritten
permissionorthepublisherandwriter,exceptinthecaseof
briefquotationsembodiedincriticalarticlesorreviews.

This book is a work ofnon-fiction.Names,characters,
businesses,organizations,places,eventsandincidentseither
aretheproductoftheauthor’simaginationorareusedmay
befictitiouslybutanyresemblancetoactualpersons,livingor
dead,events,orlocalesisintentional.

Forinformationcontact:
NurKhaledaAtirahbintiKamarudin
MBE161088
MasterinArchitecture
FacultyofBuiltEnvironment

Booktemplatedesignandbookcoverdesignby
©NurKhaledaAtirahbintiKamarudin
EcoPosterimagebyTimurMukhametzyanov,Behance.net

FirstEdition:January2019

iii

ACKNOW LEDGEMENT

Alhamdulillah,withthenameofAllahS.W.T.,theMightiestandthe
MostMerciful.Peace and blessingsbe upon the Noble Prophet
MuhammadS.A.W.andtohisfamilyandcompanions.Iam grateful
toAllahS.W.TforHisguidanceandwithHispermission;Iam ableto
complete myresearch studyand the write up ofthisdissertation
successfully.

Iwishto expressmydeepestappreciationto allpeoplewho
helped me inthisjourneyto complete thisdissertation.Mysincerest
gratitudetomysupervisorAssociateProfessorDr.MohdZinbinKandar
forhiscontinuoussupportingiving guidanceand encouragement
throughout the completion ofthis dissertation.With his expert
guidance,Iwasabletoovercomealltheobstacleoffinishing this
research.SpecialthankstoDr.SyedAhmadIskandarforhisguidance
andadviceaswellastimespentthroughoutthecompletionofthis
dissertation.To allpanelmembersofLestariunit,Dr.DorisToe,Dr.
AhmadSaifuddinBinAbdullah,andDr.AbdullahSanibinHjAhmad
fortheircontribution and sharing knowledge.To mydearfriends,
thankyouforthecountlessmotivationsupportandencouragement.

Tomyparents,KamarudinbinMohdYusofandJamilahbintiIsmail,
thankyou foryourprayers,love and encouragementthrough my
Master’sdegreejourney.Deepestappreciationtomymother,whois
alwaysbelievinginmeandseethebestofme.WithoutherIcouldnot
possiblymadethisfar.Lastbutnotleast,tomydearhusband,Asyran
bin Anuar. Thank you for your understanding, love and
encouragementthroughupsanddowns.MayAllahS.W.Tgrantallof
uswithHisblessinghereandhereafter.

NurKhaledaAtirahbintiKamarudin
UniversitiTeknologiMalaysia

iv

ABSTRACT

Thethesisdiscussedaresearchaboutthepotentialandstrategies
ofreuse and recycle materialas alternative building materials
towardslow embodiedenergythataresuitableforMalaysiacontext.
Embodied energy isthe energy consumed during the processes
associated withthe productionofa building including the material
resourcestoproductmanufacturing,transportationandconstruction.
Inordertoachievesustainableenergyperformanceofbuilding,most
architectshighlyfocuson decreasing building operationalenergy
while the importance ofembodied energyhasbeen neglected.
Hence,theapplicationofreuseandrecyclematerialscouldreduce
the total of embodied energy in building as compared to
conventionalmaterialsbecauseofthelessprocessofproductionis
involved.Throughoutthisinitiative,thewastematerialsinconstruction
can be reduced and directly reduce the demandsofnatural
resources.Theaim oftheresearchistoderivestrategiesofreducing
embodiedenergyinbuildingmaterialthroughthepotentialofreuse
and recycle from waste materialas building component.The
research employed extensive literature review,materiallocation
mappingandcasestudiesandacomparativeanalysisbetweentwo
variablesisconducted toevaluatethevalueofembodied energy
betweenreuseandrecyclematerialandconventionalmaterial.Itis
found that,the application ofreuse and recycle materialscould
reduce 50% of the totalembodied energy as compared to
conventionalbuilding materials.Thus,theapplicationofreuseand
recyclematerialcouldbeoptimizedthroughrelevantstrategiesand
materiallocality.

v

ABSTRAK

Tesisinimembincangkansatukajiantentangpotensidanstrategi
penggunaanbahangunasemuladanbahankitarsemulasebagai
bahanbangunanke arahbangunanrendahtenaga terkandung.
Tenagaterkandungialahtenagayangdigunakanketikaprosesyang
berkaitdenganpenghasilansebuahbangunantermasukdarisumber
bahankeprosesmanufaktur,pengangkutanbahandanpembinaan.
Untukmencapaibangunanyang bertenaga lestaridalam prestasi
bangunan,kebanyakan arkitek lebih fokus pada pengurangan
tenaga operasidan telah mengabaikan kepentingan tenaga
terkandung.Justeru,penggunaanbahanguna semula danbahan
kitarsemula dapat mengurangkan jumlah keseluruhan tenaga
terkandung dalam bangunan berbanding bahan konvensional.
Melaluiinisiatifini,kadarpeningkatan sisa pembinaan diMalaysia
dapat dikurangkan dan dalam masa yang sama dapat
mengurangkanpermintaanindustriterhadapsumberbahanmentah.
Tujuan kajian inidijalankan untuk mengenalpastistrategiuntuk
mengurangkan tenaga terkandung dalam bahan binaan melalui
penggunaan bahan kita semula sebagaikomponen bangunan.
Kajianinitelahmenggunakankajianliteraktur,lokasisumberbahan
dan kajian kes dan analisis perbandingan antara dua
pembolehubah telah dijalankan untuk menilaijumlah tenaga
terkandung diantara bahanguna semula danbahankitarsemula
dan bahan konvensional.Melaluikajian ini,penggunaan bahan
guna semula dan bahan kitarsemula dapatmengurangkan 50%
daripadajumlahkeseluruhantenagaterkandungjikadibandingkan
dengan bahan konvensional.Oleh itu,penggunaan bahan guna
semula dan bahan kitarsemula dapatdioptimumkan dengan
strategibersesuaianmelaluipengunaanbahantempatan.

vi

TABLEOFCONTENTS

CHAPTER1 01
03
INTRODUCTION 04
04
1.1 BackgroundStudy 04
1.2 StatementoftheProblem 05
1.3 ResearchAim 06
1.4 ResearchQuestion 06
1.5 ResearchObjectives 07
1.6 TheoreticalFramework 07
1.7 ScopeandLimitationsoftheStudy
1.8 SignificanceofResearch 11
1.9 ResearchMethodology 21
1.10 SummaryandConclusion 14
17
CHAPTER2 17
18
LITERATUREREVIEW 18
19
2.1 GlobalResourcesState 19
2.1.1 NaturalResourcesConsumptioninMalaysia 20
20
2.2 WasteGenerationRateinMalaysia 21
2.3 MunicipalSolidWasteManagementTreatment 22
23
2.3.1 Landfills 24
2.3.2 ReuseandRecycle 24
2.3.3 WasteSeparationattheSource 25
2.4 EnergyUseinBuildings 25
2.4.1 EmbodiedEnergyandOperatingEnergy 26
2.4.2 EmbodiedEnergy:DefinitionandInterpretation 27
2.5 LifeCycleEnergyModel
2.5.1 TheInitialEmbodiedEnergy 29
2.5.2 BuildingMaterialProductionStage 31
2.5.3 TransportationEnergy 33
2.5.4 ConstructionEnergy 35
2.5.5 RecurringEmbodiedEnergy
2.5.6 DemolitionEnergy
2.5.7LifeCycleAssessment
2.6 EffectsofRecyclinginTotalEmbodiedEnergy
2.7 ReuseandRecycleMaterialsApplication
onBuildingDesign
2.8 BuildingCaseStudy
2.8.1 TheMicroLibrary,Bandung,Indonesia
2.8.2 TheBottleHouse,Bandung,Indonesia
2.8.3 PlasticBottleSchool,Guatemala
2.9 SummaryandConclusion

vii

CHAPTER3

RESEARCHMETHODOLOGY

3.1 Introduction 39

3.2 ResearchOperationalFramework 39

3.3 ResearchMethod 39

3.4 DataCollectionProcedure 42

3.5 ComparativeAnalysisCalculationMethodology 42

3.5.1 BuildingModelDescription 42

3.5.2 VariableA–ConventionalBuildingMaterial 45

3.5.3 VariableB–ReuseandRecycleMaterial 45

3.5.4 EmbodiedEnergyAnalysisMethod 45

3.5.5 PotentialMaterialResourcesLocationMapping 46

3.6 SummaryandConclusion 46

CHAPTER4

RESULTSANDDISCUSSION

4.1 Introduction 49

4.2 MappingofPotentialMaterialResources 49

4.2.1Resource&RefinementMap 50

4.3 BuildingComponentBreakdown 51

4.3.1 StructuralSystem 51

4.3.2 MaterialsBreakdown 52

4.4 ComparativeAnalysisCalculation 54

4.4.1 EmbodiedEnergyValueperkg 54

4.4.2 EmbodiedEnergy–StructuralSystem 54

4.4.2.1VariableA:ConventionalMaterial 55

4.4.2.2 VariableB:RecycleandReuseMaterial 55

4.4.2.3 ResultSummary 55

4.4.3 EmbodiedEnergy-GroundFloorLevel 56

4.4.3.1 VariableA:ConventionalMaterial 56

4.4.3.2 VariableB:RecycleandReuseMaterial 56

4.4.3.3 ResultSummary 57

4.4.4 EmbodiedEnergy-FirstFloorLevel 57

4.4.4.1 VariableA:ConventionalMaterial 58

4.4.4.2 VariableB:RecycleandReuseMaterial 58

4.4.4.3 ResultSummary 59

4.4.5 EmbodiedEnergy–SecondFloorLevel 59

4.4.5.1 VariableA:ConventionalMaterial 60

4.4.5.2 VariableB:RecycleandReuseMaterial 60

4.4.5.3 ResultSummary 60

4.5 TotalComparativeAnalysisResults 61

viii

CHAPTER5

CONCLUSIONANDRECOMMENDATIONS

5.1 Introduction 65

5.2 Conclusion 65

5.2.1PotentialandTypesofReuse&RecycleMaterial65

5.2.2EmbodiedEnergyinBuildingMaterial 67

5.2.3EmbodiedEnergyComparativeAnalysisStudy 68

5.3 LimitationsandRecommendation 68

REFERENCES
APPENDIX

viiii

LISTOFTABLES

Table2.1Primaryenergyconsumptionbypercentage, 13

2010and2017

Table2.2MunicipalsolidwastegenerationinMalaysia 14

bystates,from 2000-2010.

Table2.3Averagecompositionbyweightpercentage 16

ofcomponentsinmunicipalsolidwaste

generatedvarioussourcesinKualaLumpur.

Table2.4Embodiedenergyofcommonlyusedin 21

buildingmaterials

Table2.5Comparisonofplasticbottlewallandbrickwall 34

Table3.1Summaryofresearchobjectives,research 41

questions,principlestheories,instrumentstools

anddataanalysis.

Table3.2ExampleofEmbodiedEnergyValue 46

CalculationofVariableA

Table4.1Themappingofpotentialresourceswithinthe 49

areaofproposesite.

Table4.2Buildingcomponentmaterialbreakdown 53

specificationanditsstrategy

Table4.3EmbodiedEnergyvalueMJ/kg 54

Table4.4Structuralsystem totalmass(kg) 54

Table4.5VariableATotalEmbodiedEnergyvalueMJ/kg 55

Table4.6VariableBTotalEmbodiedEnergyvalueMJ/kg 55

Table4.7Groundfloorlevelbuildingmaterialstotalmass(kg)56

Table4.8VariableATotalEmbodiedEnergyvalueMJ/kg 56

Table4.9VariableBTotalEmbodiedEnergyvalueMJ/kg 56

Table4.10Firstfloorlevelbuildingmaterialstotalmass(kg) 57

Table4.11VariableATotalEmbodiedEnergyvalue MJ/kg 58

Table4.12VariableBTotalEmbodiedEnergyvalueMJ/kg 58

Table4.13Secondfloorlevelbuildingmaterialstotalmass(kg)59

Table4.14VariableATotalEmbodiedEnergyvalueMJ/kg 60

Table4.15VariableBTotalEmbodiedEnergyvalueMJ/kg 60

Table4.16Totalembodiedenergybetweenbothvariables 61

x

LISTOFFIGURES

Figure1.1TheoreticalFramework5 5

Figure2.1Worldgrowthinpopulation,energyuseandcarbon11

emissionresults.

Figure2.2IllegalopenrubbishdumpinPerak 17

Figure2.3LifeCycleEnergyModelDiagram 20

Figure2.4Productionandtransportationenergyofsome 23

constructionmaterials

Figure2.5Constructionenergyasapercentofconstruction 23

energyinbuildingmaterialsembodiedenergy

Figure2.6Embodiedenergyuseinnorecyclingandrecycling 26

Figure2.7Plasticwasteoutsideillegalrecyclingfactoryat 27

KualaLangat

Figure2.8Frontview ofTheMicroLibrary,Bandung 29

Figure2.9Sectiondiagram ofTheMicroLibrary,Bandung 30

Figure2.10Thecontainerswereattachedtosteelstructure 30

andtilted

Figure2.11Exteriorview oftheBottleHouse 31

Figure2.12Sectiondiagram ofairventilationoftheBottle 32

House

Figure2.13Glassbottlesasthemainarchitecturalimageof 32

thebuilding

Figure2.14Petbottleconstructioncomponent 33

Figure2.15Activeparticipationfrom thecommunityincluding 34

thechildren

Figure3.1ResearchFramework 40

Figure3.2GroundFloorPlan 43

Figure3.3FirstFloorPlan 43

Figure3.4SecondFloorPlan 43

Figure3.5Sectionoftargetedarea 44

Figure3.6SketchUp3Dmodeloftargetedarea 44

Figure4.1GoogleMapsDistancefrom sitetoJohorRecycle 50

Centre,Kempas

Figure4.2GoogleMapsDistancefrom sitetoJBGoodCare 50

Sdn.BhdandEseWoodIzzaAhmad

Figure4.3GoogleMapsDistancefrom sitetoTES-AMM 51

(Malaysia)Sdn.Bhd

Figure4.4Structuralsystem diagram oftargetedarea 51

Figure4.5Materialsbreakdownofcomponentinvolvein 52

embodiedenergycalculation

xi

Figure4.6Comparisonoftotalembodiedenergybetween 55
bothvariables(Structuralsystem) 57
59
Figure4.7Comparisonoftotalembodiedenergybetween 60
bothvariables(Groundfloorlevel) 61

Figure4.8Comparisonoftotalembodiedenergybetween
bothvariables(Firstfloorlevel)

Figure4.9Comparisonoftotalembodiedenergybetween
bothvariables(Secondfloorlevel)

Figure4.10Comparisonoftotalembodiedenergybetween
bothvariables

xii





INTRODUCTION

1.1BackgroundStudy

About40-50%ofglobalraw materialsisusedinconstructionphase
and isresponsible for40-45% oftotalworldwide anthropogenic
carbondioxideemission(Surendranetal.,2015).Theseissueshaveled
tothedevelopmentofsustainabilitypolicies,regulations,limitationof
materialsandembodiedenergyuseinbuildings.However,inorderto
achievesustainableenergyperformanceofbuilding,mostdesigner
and policieshighlyfocusondecreasing building operationenergy
consumptionwheretheimportanceofembodiedenergyhasbeen
neglected.Embodied energyisthe energyconsumed during the
processesassociatedwithproductionofabuilding,from thematerial
resourcestoproductmanufacturing,transportationandconstruction
ofthe building (Holtzhausen,2018).According to Dr.SelwynTucker
from CSIRO Commonwealth Scientific and IndustrialResearch
Organization Australia,the embodied energy existing building in
Australia isequivalentto tenyearsofthe totaloperationalenergy
consumption forthe entire country(Ciravoglu,2005).Itshowsthe
energyconsumptionduringbuildingproductionismuchhigherthan
theoperationalenergyconsumption.

Therearevariousapproachesinreducinglow embodiedenergyof
abuildingwhereoneofthesignificantapproachesistheselectionof
buildingmaterialsandmaterialresourcesincludingreuseandrecycle
material.InMalaysia,GreenBuildingIndex(GBI)assessmentcriteria
includematerialsandresources(MR)asoneoftheareaassessment
toachievegreenbuilding award (GreenBuilding Index,2009).The
area ofassessmentpromotesthe use ofenvironmentalfriendly
sustainablesourcessuchasre-useofrecyclablesbuildingmaterials.
There are severaltypesofpotentialrecyclablesbuilding materials
suchasconstructionwaste,demolitionbuildingwaste,anddomestic
waste which can consequently contribute to a better waste
management in a country (Manaf, Samah and Zukki, 2009).
According to the data stated byBossinkand Browers,totalwaste
generated from several countries showed construction and
demolitionwaste have comprised around 20% to 30% ofthe total
wasteinlandfill(Vasudevan,2015).Meanwhile,thestatisticstatedby
NationalMinistryofUrbanWellbeing,HousingandLocalEnvironment,
the waste generation produce each day by Malaysian isabout
30,000tonsofdomesticwasteandonly5percentofitisreuseand
recycle(AjaandAl-Kayiem,2014).

1

Asaresult,theproblemsledtoenvironmentalissuessuchaswaste
incinerator,furnacesforburningwaste,andashes.Theseincinerators
willproduce a variouskind ofdioxincompoundssuchasmercury,
cadmium,nitrousoxide,hydrogenchloride,sulfuricacidandfluorides
(Bolden,Abu-Lebdeh and Fini,2013).Foryears,researchershave
beensearching forpossiblesolutionstoenvironmentalconcernsof
waste productionand pollutionwhere manyhave found thatthe
replacingraw materialswithreuseandrecyclematerialsmayreduce
the dependency on raw materialsin the construction industry.
Therefore,the initiativesofreuse and recycle ofdomestic and
constructionwasteasbuildingmaterialmaygiveapositiveimpacton
environmentalissueandachieveasustainablewastemanagement
aswellasamajorchangesinachievingsustainablebuildinginterm of
embodiedenergyconsumption.

Thus,thisresearchwillparticularlyfocusonderiving strategiesof
utilizingreuseand recyclematerialsbyconsideringtheirembodied
energyvalueand thepotentialsinbuilding constructionaswellas
contribute to the minimization ofcarbon footprintproduction.This
researchwillalsoprepareanestimationnumberofembodiedenergy
valueofbuildingmaterialssuchassteel,concrete,glassandtimber
based on Life Cycle AssessmentMalaysia (LCA)data where a
comparativeanalysisbetweenconventionalmaterialandreuseand
recyclematerialwillbecarriedouttoidentifythetotalofembodied
energy.Itishopedthatthefindingoftheresearchwillcontributetoa
betterwastemanagementofdomesticand constructionwasteas
wellascreatingawarenessamongthepublicandgovernmentonthe
importance ofwaste managementand the potentialofreuse and
recyclematerialasbuildingmaterial.

2

INTRODUCTION

1.2StatementoftheProblem

The increase amountofgreenhouse gas(GHG)effect,rise of
average temperature and environment pollution are types of
challengesindesigningbuildingwhichrespondtoclimaticforce.In
ordertoachievesustainabilityina building design,architectneed
additionalknowledgetoassistthem inmakingdecisionaboutcurrent
technologyrespond to climatic forcesand the choice ofbuilding
materials.Currently,building industryisone ofhuge consumerof
deflectable energyresourcesand isdriving the environmentinan
irreversible way.Forinstance,the operationalenergyofthe whole
spanofbuildinglifeislowerthantheembodiedenergyconsumption
ofthe building.Thisismostlydue to the currentculture where the
architectsfocusontechnologicalapproachinresponding climatic
forcesandaestheticmonumentswhileignoringissuesrelatedtothe
sustainabilityofabuilding.

Fortunately,the culture is slowly moving towards responsible
architecture where they startto considerthe impactofbuilding
industry on environment. In Malaysia, the movement towards
sustainablebuildingmaterialsisstillinprogress.Through11thMalaysia
Plan,MalaysiaiscommittedtoreducingtheGHG emissionintensityby
45% by the year of 2030.It suggest improvement on waste
management,reusing and recycling ofconstructionwaste where it
maycontributetoGHG reductiongoalsaswellasreducingtheneed
toharvestraw material.However,thereisnosignificantresultorcase
studyofabuildinginMalaysiaisfullyfocusedonreducingembodied
energy.Despite ofmanyinitiativesbeing implemented inMalaysia,
we are stillfacing issueson solid waste managementwhere total
wastegeneratedincreaseeachday.Moreover,constructionwastes
contribute a highernumberintotalsolid waste generationwhere it
accountedapproximately41% ofthetotalsolidwastegenerationin
Malaysia(AjaandAl-Kayiem,2014).

AccordingtoFauziahandAgamuthu,constructionanddemolition
wastegenerationwasat299.69tonsperdayin2015,andisprojected
toreach368.31tonsperdayby2023(Mah,FujiwaraandHo,2016).
Above all,there isa need to find new strategiesin achieving
sustainable building design where minimizing oftotalembodied
energycanbeachieveaswellasreducingraw materialproduction
asitmayhelpinreducingtotalwastegeneration.

3

1.3ResearchAim

Theaim oftheresearchistoderivestrategiesofreducingembodied
energyinbuildingmaterialanddesignthroughthepotentialofreuse
andrecyclematerialforarchitecturalapplication.

1.4ResearchQuestion

Thethreeresearchquestionsarisingaslistedbelow:-
1.Whattypesofreuseandrecyclematerialsaresuitablefor
architecturalapplication?
2.Whatarethepossiblestrategiesofreducingembodiedenergyin
buildingproduction?
3.Doestheapplicationofreuseandrecyclematerialcanreduce
50%ofcarbonfootprintconsumptionascompareto
conventionalmaterial?

1.5ResearchObjective

Therearethreeobjectivestobeaccomplishedwhichare:-
1.Toidentifythepotentialandtypesofreuseandrecyclematerial
suitableforarchitecturalapplication.
2.Toanalyzethestrategiesofreducingembodiedenergyin
buildingproductionsthroughtheapplicationofreuseand
recyclematerial.
3.Toevaluatethevalueofembodiedenergyconsumptionthrough
comparativestudyanalysisbetweentheapplicationof
conventionalmaterialandreuseandrecyclematerial.

4

INTRODUCTION

1.6TheoreticalFramework

Figure1.1:TheoreticalFramework(Author,2018)
5

1.7ScopeandLimitationsofTheStudy

The studywillfocusonthe strategiesinapplicationofreuse and
recycle materialsasbuilding materialalternative inthe contextof
proposeareainJohorBahru,Malaysia.Asperdescribe,thetypesof
materialschosenare subjective to the availabilityand resourcesto
thearea.Thescopesofthestudyincludecomparativedataanalysis
oftotalembodiedenergybetweenconventionalmaterialandreuse
and recycle material.The data ofembodied energyare collected
based on Life Cycle AssessmentMalaysia data (LCA)and data
collectedbasedonliteraturereview.Thescopesofstudyarebased
onenvironmentalforcesinMalaysiacontext.

Throughoutthestudy,itisaimedtodemonstratedesignbasedon
reuseandrecyclematerialasarchitecturalelementandcontributein
reducingmorethan50%ofembodiedcarbonfootprintproductionas
compare to conventionalbuilding.The limitationsofthe studyare
financiallimitation,embodied energydata collected limitationand
the time frame taken throughout the process. The results of
comparativedataanalysisarebasedonschematicdesignproposal
ontheactualsitewhichmighthaveaslightvaryresulttotheactual
dataoutcome.Themodeluseisexpectedtobeabasicschematic
designduetolimitedworkstationperformances.

1.8SignificanceofResearch

The aim ofthe research is to derive strategies ofreducing
embodied energy consumption in building design through the
potentialofreuseandrecyclematerialonarchitecturalapplication.
Thus,the outcome isexpected to suggestdesign strategiesin
optimizing reuse and recycle materialas part ofarchitectural
element.Theunderstandingofmaterialpotentialsmayhelparchitect
inachievingsustainablebuildingaswellascontributetothereduction
greenhouse gas(GHG)productionbyreducing new raw material
production.Hence,the finding ofthe studywillhelp and provide
architecture students,architects,academiciansand wide range of
professionalwithvariousoptionsindeterminingbuildingmaterialsand
designstrategiesto utilize reuse and recycle materialasalternative
towardslow embodiedenergybuilding.

6

INTRODUCTION

1.9ResearchMethodology

Thestudywillusebothprimaryand secondarymethod ondata
collectionwhereitisamechanism toidentifyresearchparadigm and
researchstructure direction.The data collectionisthe firststep to
identifytheresearchgapinthestudyarea.Thedatacollectionisfrom
primaryandsecondarydata.Theprimarydataincludesfieldsurvey,
andcasestudywhilesecondarywillbecollectedthroughliterature
review,books,thesis,guidelinesarticles,reportsandinternetsources
data.Theliteraturereview emphasizesontheprincipleandvarious
techniquedonebypreviousresearchersaswellastheoreticaldata.
The case studyofmaterialapplication on building willbe review
basedonactualbuiltprojectrelevanttotheMalaysiacontext.

1.10 SummaryandConclusion

Thestudywilldiscussonthenew strategiesinachievingsustainable
building where low embodied energyconsumptionbyintroducing
the application ofreuse and recycle materialas architectural
element.Bytheseinitiatives,thewastegenerationmaydecreaseas
wellasreductiononnew materialproduction.Basedontheissuesof
highembodiedenergyonconventionalbuildingandtheincreaseof
totalwaste generation in Malaysia,the study on the solution is
conductedbyexploringthepotentialofreuseandrecyclematerials.
Hence,the studyaimed to derive strategiesofreducing embodied
energyconsumptioninbuildingdesignthroughthepotentialofreuse
andrecyclematerialonarchitecturalapplication.

7

Inordertoachievethisaim,severalobjectivesisconductedwhich
are to understand the potentialand typesofreuse and recycle
materialsuitable for architecturalapplication,and identify the
strategiesofreducing embodied energy in building productions
through the application ofreuse and recycle material.Finally,
evaluation ofthe totalembodied energy through comparative
analysisstudybetweentheapplicationofconventionalmaterialand
reuseandrecyclematerialisconducted.Hence,itisexpectedthe
resultofthestudywillsuggestnew strategiesinoptimizingreuseand
recycle materialas building materials where reduction oftotal
embodiedenergywillbeachieve.

8





LITERATUREREVIEW

2.1GlobalResourcesState

Ourearthholdswidelynatureresourcessuchasfreshwater,raw
materials,fossilfuels and minerals.However,the resources are
decreasingwithtimeandmayfacingacompletedeficiencyinthe
future(Cairns,2003).Afew questionsariseonwhentheresourceswill
be complete depleted whichare dependsonthe currentrate of
anthropogenic consumption.According to Lehmann,resources
consumptionisa transformativeprogresswhichundergoesthrough
chemicalandphysicalchangessuchasfuelcombustion(Lehmann,
2011).Eachstageofresourcesconsumptionwillresultstoendproduct
suchaswastegenerationandcarbonemission(Lehmann,2011).As
example,the applicationofraw materialsinbuilding construction
may resultsasconstruction waste and the use offossilfuelswill
contributetoharmfulemissions.

Atanyrate,theincreasingofresourcesconsumptionwillconstantly
increasewaste,dischargeandcarbonemissionwhichwillgiveharm
totheenvironment(Lehmann,2011).Thetwomajorcomponentsof
the exponentially growing resourcesusage are population and
affluence where the consumption ofresourcesincrease with the
increase numberofuser(Alcott,2012).Moreover,the growing of
higherlifestylestandardmaycontributetotheincreaseofgoodsand
servicesdemand.

Figure2.1:Worldgrowthinpopulation,energyuseandcarbon
emissionresults.(Kumar,2013)

11

Accordingtothedatesourcedfrom theUnitedNation’sDepartment
ofEconomicandSocialAffairs,figure2.1showstheincreaseinworld
globalpopulation between 1950 and 2010.The graph showsa
constantgrowthinglobalpopulationwhichresultedinanincreaseof
energyconsumption(UNDESA,2012).Thecarbonemissionproduced
byfossilfuelcombustionarecloselyfollowedtheenergyusecurve.At
thesametime,steadygrowthinpercapitaGrossDomesticProduct
alsofollowedthepopulationgrowthcurve.AgrowingGDPmarksthe
increasingofgoodsand servicesresultinginmountingemissionsas
showninfigureabove.

Currentlytheglobalpopulationisover7millionandisexpectedto
reach9to10billionbytheendofyear2050.Basedontheprediction,
no one can imagine the situation of resources consumption.
AccordingtoBruce,thefutureglobalpopulationthatwillgrowthmost
mayoccurin developing country(Bruce,2012).Forinstance,the
economyofthe world’smostpopulated countriessuchasChina is
developing ata fasterrate where the affluence levelalso increase
(Bruce,2012).Thus,reuseandrecycleisoneofthebestinitiativesto
helpthedepletionofresources.

2.1.1NaturalResourcesConsumptioninMalaysia

Due to population growth,affluence,industrialization,migration,
highinfluxofforeignworkerandstudents,Malaysianpopulationhas
increasedatarateof2.4%perannum since1994(Saherietal.,2011).
The populationgrowthinMalaysia hasled to massive infrastructure
development projects including residential construction and
commercialbuildingsaswellasconstruction ofcityinfrastructure
(Sreenivasan, 2012). Consequently, these development and
urbanizationcomewiththechallengesofwastegenerationaswellas
theincreaseofenergydemand theseissuesassociated withmany
environmentalburdens.

12

LITERATUREREVIEW

Therefore,environmentalsustainabilityneedstoreducetheimpact
byencountering sustainable industrialdevelopmentbyutilizing raw
resourcesin an sustainable manner,and utilization ofreuse and
recyclematerialsinpreservingtheenvironmentforfuturegeneration
(AjaandAl-Kayiem,2014).Inbrief,everytypesofactivitiesrequired
energyincludingnon-living.Thismeansthequalityoflifearedepends
onenergyavailability.Energyrequirementsaredependsontheability
ofacountry,climaticforcesandtechnologies.

Table2.1:Primaryenergyconsumptionbypercentage,2010and
2017(AjaandAl-Kayiem,2014)

Table2.1aboveshowsMalaysiaenergyconsumptionfortheyear
2011 was about97.45% offossilfuel,2.45 % hydropowerand
significantly less than 1% from renewable energy sources.
Unfortunately, these energy supplies have contribute to
environmentalimpacts(Aja and Al-Kayiem,2014).Forinstance,the
deforestation and utilization of fossil fuels contribute to the
environmentaldegradation,andtheincreasingofGHG emissionthus
giveaffectstotherisingofglobalwarming(AjaandAl-Kayiem,2014).

Furthermore,municipalsolid waste degradationrelease methane
whichconstitute55% ofthevolumeoflandfillgaswhereitgive21
timesmore to the globalwarming ascompared to carbondioxide
(Joharietal.,2012).Aboveall,theincreasingofmunicipalsolidwaste
generationinMalaysiahaveincreasethe pressureandshortensthe
life span of existing landfilland thus leads to environmental
degradation.

13

2.2WasteGenerationRateinMalaysia

Municipalsolidwastemanagementisamainchallengeespecially
incityareasthroughouttheworld.Thegenerationofmunicipalsolid
waste by the population is depends on their socioeconomic
background, cultural background, locality, and environment
awareness(Saherietal.,2011).InMalaysia,theaverageamountof
solid waste generationisinthe range of0.5–0.8kg/cap/dayfor
smallertownsand ruralareaswhereashousehold oflargercityand
federalterritorysuchasKualaLumpurtendtoproduceabout1.7–1.9
kg/cap/day(Agamuthu,2010).In2001,dailygenerationofmunicipal
solid waste in PeninsularMalaysia was16,200 tonnesperday,it
reached19,100tonnesperdayin2005andbytheyearof2020,the
quantityofmunicipalsolidwastegenerationisestimatedtoincrease
over30,000tonnesperday(Agamuthu,2010).

Table2.2:MunicipalsolidwastegenerationinMalaysiabystates,
from 2000-2010.(Agamuthu,2010)

Table2.2showsthedataoftheaveragedailymunicipalsolidwaste
generationbystatesfrom year2000toyear2010.Thequantitiesand
compositions ofmunicipalsolid waste may vary among states
depending on the size oftownship and the levelofeconomic
backgrounds (Agamuthu,2010).In 2010,municipalsolid waste
generation mayproduce in the range of91tonnesperdayin WP
Labuanto3740tonnesperdayinWPKuala Lumpur.Accordingto
Agamuthuanalysisonthe percentage increase ofmunicipalsolid
wasteintonnes/day,itwasclearthattherateofwastegeneration
increaseatabout3%peryear(Agamuthu,2010).

14

LITERATUREREVIEW

Thus,a projectionofthe quantityofwaste generationin2020is
conducted by using 3% ofannualincrease.According to the
projection,itisexpected thatthe totalwaste generation may
increaseupto36,165.4tonnesperday(Agamuthu,2010).However,a
recentreportin2012from theUrbanWellbeing,Housing,andLocal
GovernmentMinister,Datuk AbdulRahman Dahla stated,waste
generationquantityin2012hashit33,000tonnesperdaywhichhas
alreadyexceedtheprojectednumberofproductionof30,000tonnes
byyear2020(Mokhtar,2013).

InMalaysia,wastecollectionisvaryingfrom citytocity.Forinstance
inWPKualaLumpur,about80% ofmunicipalsolidwasteiscollected.
Inthemeanwhile,only60% ofmunicipalsolidwastecollectedisfor
the entire country.On the contrary,only 1 to 5% ofthe waste
collected isrecycle while the restpercentage isdisposed into
differentlandfillsite(AjaandAl-Kayiem,2014).Larsenhasidentified
andrecordswherethereisabout12caseofillegaldumpingsiteand
150from othersites.Accordingtotheinvestigation,39%oftheillegal
dumped waste site were came from building construction &
demolition,33% werefrom industrial& commercialwaste,17% were
from landscapewasteandtheremaining11% werefrom residential
waste(Larsen,2007).

Municipalwaste generated consist of different biodegradable
materialssuch asfood waste,construction waste such asdebris,
concrete,masonry and domestic waste such aspapers,textiles,
plastic and rubber.According to municipalsolid waste analysis
conducted bySaeed,theanalysisshowsthatabout48% ofwaste
generated from household waste,11% camefrom streetcleaning,
24%wascommercialwaste,7%from landscapewaste,4%camefrom
construction waste and 6% from institutionalwaste (Aja and
Al-Kayiem,2014).There are three majorcomponentsofMalaysian
municipalsolidwastewhicharefoodwaste,paperandplasticwhich
indicatehighmoisturecontentinrangeof52to66%,whereleadto
incinerationasachallengetask.

15

Table2.3:Averagecompositionbyweightpercentageof
componentsinmunicipalsolidwastegeneratedvarioussourcesin

KualaLumpur.(AjaandAl-Kayiem,2014)
Table2.3showstheaveragecompositionbyweightpercentageof
componentsinmunicipalsolidwastegeneratedwhereitshowedthat
a largenumberofMalaysianwastecanberecycleand reusable,
whichcomprisedofplastic,paper,aluminium andglass(Saherietal.,
2011).These recyclable itemshave to be separate into categories
beforesenttolandfillsasitmaycausetothelossofqualityandvalue.

16

LITERATUREREVIEW

2.3MunicipalSolidWasteManagement
TreatmentinMalaysia

Municipalsolid waste managementprocessisa processofthe
collectionofwaste,continueswithwastetransportation,wastesorting
based ontypeofwastesand properdisposal.InMalaysia,mostof
waste management practices are landfilling and recycling .
However,about80-95% issenttolandfillandonly5% wererecycled
(Aja and Al-Kayiem,2014).In spite ofthe increasing ofwaste
generation in Malaysia,municipalsolid waste collection system is
providedatlimitedpartofMalaysiapopulationareawheretherural
areainMalaysiaarestilldoesnothaveanyproperwastecollection
system whichcause to the use ofillegaldumping sitesand illegal
landfills(Sakawi,2016).

2.3.1 Landfills

Figure2.1:IllegalopenrubbishdumpinPerak(TheStar,2014)
Landfillisan engineered compression in the ground where the
collected wastes are buried down in order to separate any
connectionbetweencollectedwasteandthesurrounding(Ajaand
Al-Kayiem,2014).Landfilling isthe mainmethod ofwaste disposal
throughoutthebecauseofithasthewidestrangeofcapabilitiesand
one ofthe cheapestcostofdisposalmethod (Theng,2000).In
Malaysia,landfillsarethemainwastedisposalmethodwhere80% of
thecollectedmunicipalsolidwastesweredisposedthere.
17

Unfortunately,thismethodisbecomingmorecomplicatedtouse
properlyduetothelandfillshasreachthemaximum capacityand
new siteforlandfillaredifficulttoconstructbecauseoflandscarcity
(Saherietal.,2011).MinistryofHousing&LocalGovernmentstatethat
there 165 operationallandfillssite in Malaysia to cater95% of
Malaysian waste disposal(Yahaya,2012).However,many ofthe
landfillssitehasreachtotheirmaximum capacity.Thus,anawareness
toreducewastegenerationisneeded.

2.3.2 ReuseandRecycle

Waste minimization is key solution to sustainable waste
managementwhere itisdependsonwaste generationreduction,
andtheminimizationnumberofwastedisposedinlandfillssiteaswell
asmaximizetheefficiencyofresourcesutilizationincludingreuseand
recycle(AjaandAl-Kayiem,2014).Thefastfillingupofthelandfillssite
maylead to the negative impacton the environmentaswellas
health issues.Thus,reuse and recycle ofdomestic waste aswell
constructionanddemolitionwasteshouldbethemainfocusofthe
authorities.Recyclecanbedefineasadisciplinesthatutilizesexisting
productsefficientlywheretherecoveryofmaterialincludingcertain
processorcanbereusedirectly(AjaandAl-Kayiem,2014)Thisaction
mayavoid waste from overload the landfillscapacity,and atthe
samemayreduceenergyconsumptionfrom theprocesstodisposed
waste(Ali,2008).

2.3.3WasteSeparationatSource

Waste separation isthe method ofclassified type ofwaste into
group.The process can started the household and collected
separatelyaccording to the waste group oritcan be separated
automatically atmaterialrecovery process(Aja and Al-Kayiem,
2014).Generally,waste can be classified into wetand drywaste
wherewetwastereferstofood and organicwastemeanwhiledry
waste refers to aluminium,glass and plastic.Currently,waste
separationinMalaysia isdonebytheworkersatmaterialrecovery
centrebutthismethodarenoteffectiveaswetmaterialmaychange
thecharacteristicofdrywaste(Rahmanetal.,2011).Therearemany
benefitsthatcanbeobtainedfrom wasteseparationatsourcesuch
asreduction numberofwaste sentto landfills,aswellaswaste
composting can be composted individuallythusreduce the cost
involveinwastedisposal(AjaandAl-Kayiem,2014).

18

LITERATUREREVIEW

2.4EnergyUseinBuildings

Annually,buildingconsumeabout40% averageofworldenergyin
theirlifecycle.Theenergyconsumed ofthebuilding aredirector
indirectenergy (Kumar,2013).Forinstance,in United Statesof
America,theresidentialbuildingsectorconsumesabout55%average
ofthetotalprimaryenergyeachyearwhileinChina,theresidential
building sectorconsumed 20 to 27% ofthe countrytotalenergy
(Kumar,2013)

2.4.1EmbodiedEnergyandOperatingEnergy

The totalenergyconsumption ofbuilding including the service
period isknownaslife cycle energywhere itconsistoftwo primary
components;embodiedenergyandoperatingenergy(Kumar,2013).
Operating energyistheenergyconsumptionduring thebuilding is
used suchaselectricityused to powering the building appliances
(Kumar, 2013). Meanwhile, embodied energy is the energy
consumption during the processofmaterialmanufacture to the
deliveryofmaterialstothesiteandtheenergyconsumptionduring
theconstructionprocess(Kumar,2013).

Previously,itwasassumed thatthe building’stotalembodied
energyofwaslowerascomparedtotheenergyconsumeduringthe
building operationofitslife.Therefore,mostfocuswasonreducing
operatingenergybydevelopingsustainableapproachontheenergy
efficiencyofthe building.However,a few researcheshave shown
that embodied energy can be equivalent to many years of
operationalenergy.Furthermore,operationalenergyisdependingon
thebuildinguser.Meanwhile,embodied energyisnotdependson
userbecause the energy isconsumed from the materialsand
constructionitself(Thormark,2001).A studybyCSIRO showsthatan
averagehousemayconsumeabout1,000GJofenergyembodiedin
thematerialsusedinbuildingconstructionwheretheenergyisequal
to average of15yearsnormaloperationalenergyuse (Ciravoglu,
2005).

19

2.4.2EmbodiedEnergy:Definitionand
Interpretation

Buildingsareconstructedwithavariousmaterialwhicheachmaterial
consumes energy throughout its life cycle stages such as
manufacture,processing ofnaturalresources,productdelivery,
constructionprocessanddisposal.Theenergyconsumedbyallofthe
process is known as embodied energy (Holtzhausen,2018).A
complexcombination ofprocesswilldetermine the building’stotal
embodied energy.One ofthe mainimportantfactorsinreducing
embodied energyistoplansustainablyofmaterialsselection,and
constructionmethod(Ciravoglu,2005).

Besides,the building operation maintenance may add to the
building’s total embodied energy. Construction method and
materialsselection may significantly change the totalembodied
energyasitcontentvariesbasedontypesofmaterialandproducts
(Kumar,2013).Theembodiedenergyvalueofmaterialsaredifferent
dependson type and processinvolve.One ofthe initiativesin
reducingembodiedenergyisusingreuseandrecyclesmaterialsas
buildingmaterialsbecauseoflow energyinvolveinthereprocessorit
canbenoenergyinvolveifnoprocessrequired(Bolden,Abu-Lebdeh
andFini,2013).

2.5LifeCycleEnergyModel

Figure2.2:LifeCycleEnergyModelDiagram (Kumar,2013)

20

LITERATUREREVIEW

The totallife cycle energyisthe energyused bya building.It
includes by two components which is embodied energy and
operationalenergy.Thisenergyareconsumedduring3mainstages
ofthebuildinglifecycle;constructionprocess,buildingoperationand
demolition.Figures2.2showstheembodiedenergyflow anddescribe
the energy use associated with 3 three stageswhich are,initial
embodied energy,recurrentembodied energy and demolition
energy(Kumar,2013).Theinitialenergyistheenergyusedinbuilding
materialsmanufacture,materialsassembles,andequipment,aswell
asbuildingconstructionprocesssuchasconstruction,transportation,
installationandworkers(Holtzhausen,2018).Therecurrentembodied
energyistheenergyconsumedduringthebuildingmaintenanceand
renovationLastly,atthe end ofbuilding life,the energyconsumed
duringthebuildingdemolitionandsortingwastetoreuse,recycleand
disposeisknownasdemolitionenergy(Vukotic,FennerandSymons,
2010).

2.5.1 TheInitialEmbodiedEnergy

Theinitialembodied energycanbedefined asthetotalenergy
consumed during material production phase and building
construction phase (Vukotic,Fennerand Symons,2010).During
building materialproductionphase,the upstream processsuchas
raw materialextraction and treatmentto the materialdelivery
consumed intensive energy(Kumar,2013).The processinvolvesthe
energyuse ofelectricity,naturalgasand fuels.Then,the energy
expendedtodeliveryprocesswherethematerialsisdeliveredtothe
construction site ormaterialsupplier.Finally,energy use during
construction phase such as material delivery, construction,
fabrication,and administration.Inshort,the totalofallthe energy
consumed in producing a building isknown asinitialembodied
energy(Vukotic,FennerandSymons,2010)

Table2.4:Embodiedenergyofcommonlyusedinbuildingmaterials
(Kumar,2013)

21

2.5.2BuildingMaterialProductionStage

Manufacturingprocessofbuildingmaterialsconsumednonenergy
and energy such as raw materials,electricity,fueland water
(Thormark,2001).Theoverallmanufacturingprocessiscompletedin
three phase whichare manufacturing,upstream and downstream
(Kumar,2013).During the production phase,directand indirect
energyareusedasenergysource.Asexample,petroleum isutilized
forenergypurposeandalsoasaraw resourcetoproducematerials
suchasplastics.Thetransportationprocessincludingonsiteandoff
sitewhichrelated tomanufacturing isconsidered asdirectenergy
input(Kumar,2013).Thetotalofenergyusedupdirectlyandindirectly
duringthese3phasesuntilthefinalproductarrivethedestinationare
consideredasbuildingmaterialproductionenergy.

Accordingtothetable2.4,themostcommonlyusedmaterialssuch
asvirgin steel(34.9MJ/kg),PVC (96MJ/kg)and aluminium (129
MJ/kg)haveahigherembodiedenergywhichcontributesignificantly
building’stotalembodied energy (Kumar,2013).The embodied
energyinbuildingmaterialsalsodependsonthetypeofconstruction
methodsuchassteelframe,concreteframeorwoodframe.Based
ontheresearchbyKumar,themostenergyintensiveconstructionis
reinforced concrete construction with clay brick (Kumar,2013).
Unfortunately,the mostconventionaltype ofconstruction among
populated regionsofAsia isa reinforced concrete frame withclay
brick.Onthecontrary,buildingsthatvernacularconstructionmethod
anduselocalmaterialstendtohavelowerembodiedenergyvalue
(Kumar,2013).Itismainlybecauseofthematerialswereproduced
withinthearea and involvemorehumanenergythanmechanical
energy.

22

LITERATUREREVIEW

2.5.3 TransportationEnergy

The finalproductsare transported from the manufacture to the
constructionsite.Thematerialsmaybetransportedlocally,imported
from theoutsidecountryorexportedtootherlocationswhichinvolves
a variousoftransportationmodesand consume a wide rangesof
energyresource.

Figure2.3:Productionandtransportationenergyofsome
constructionmaterials(Kumar,2013)

Building materials may be transport by surface, air or sea
transportationdependsonthe location(Chen,Burnettand Chau,
2001).Figure 2.3 showsthatembodied energy oftransportation
energyofmaterialssuchassand and aggregateswashigherthan
production energy.Itisbecause ofthe materialundergoesless
energy required in production whereas transportation energy
dependsontypesoftrucks,weightanddistance(Kumar,2013).

2.5.4 ConstructionEnergy

Figure2.4:Constructionenergyasapercentofconstructionenergy
inbuildingmaterialsembodiedenergy(Kumar,2013)

23

Theconstructionenergyistheenergyconsumedduringon-siteand
off-site construction such asfabrication and installation (Vukotic,
Fennerand Symons,2010).Worker,building materials,equipments
and tools,vehiclesand electricitythatinvolved during construction
are consume energywhetherdirectlyorindirectly(Vukotic,Fenner
andSymons,2010).Oneoftheexampleofdirectenergyusedisthe
used ofdieselto operated the machine equipmentwhereasthe
indirectenergy isthe energy used to manufacture the machine
(Kumar,2013).According to figure 2.4,concrete materialhasthe
highestpercentageofembodiedenergy.Itismainlybecauseofthe
numberoflaborsneededandmachinesrequiredforthisconstruction
method.Therefore,thetotalconstructionenergyshouldbeincluded
theenergyconsumefrom mechanicalandhumanenergy.

2.5.5 RecurringEmbodiedEnergy

Recurringembodiedenergyistheenergyusedafterthebuildingis
occupied and used. The energy includes the process of
maintenance, replacement and management that consume
energy.Anypartofthebuildingwhichisrefurbishedorrenovated,the
amountofenergyand materialwillincrease.Totalenergyspent
directly orindirectly during the use phase istermed asrecurring
embodied energy (Chen,Burnett and Chau,2001).Recurring
embodiedenergyaredependsontheservicelifeofthebuildingand
maintenancerequirementsoftheproductsusedinbuilding.

Asexample,a poorquality ofpaintisapplied on the walls,will
resultingtomorefrequentrepaintingwhichisledtotheadditionaluse
ofmaterialandenergy(Chen,BurnettandChau,2001).Therecurring
embodied energyissimilarto the construction energywhere the
building maintenance requires materials and also involve
transportation and human energy. Therefore, factors such as
durability, sustainability, long term operation period, low
maintenance requirementand recycle & reuse potentialofthe
materialsinstalledcouldcontributetolowerdownthetotalrecurring
embodiedenergyofthebuilding(Kumar,2013).

24

LITERATUREREVIEW

2.5.6 DemolitionEnergy

Demolitionenergyistheenergyconsumedattheendofbuilding
life where the building isdemolished and itsmaterialsare sorted,
treated forreuse,recycleordisposaltolandfill(Holtzhausen,2018).
Therearefourstagesofenergyconsumedattheendofbuildinglife.
The firststage isthe complete demolition and disassemblyofthe
buildingswhichinvolveheavyequipmentsuchashydraulichammers
(Vukotic,FennerandSymons,2010).Nextinthesecondstage,where
onsitedemolitionoccurs,theseparationofbuilding materialsand
wastesortingisconducted.

Demolitionwasteaswellasmaterialsthatcanbereuseandrecycle
willbetransportedtolandfillsortorecyclingfacilitiesisthethirdstage.
Finally,thefinalstageistheequipmentusedatrecyclingfacilitiessuch
asjaw crushersand magnetic separatorsare used to separate
reusableandrecyclematerials(Vukotic,FennerandSymons,2010).
Sorted materialsarethentransported tomanufacturing facilitiesor
constructionsite.Theimportantactivityatthisstageistheapplication
ofreuseandrecyclematerialscouldlowerdowntheinitialembodied
energyinthebuilding(Thormark,2001)

2.5.7 LifeCycleAssessmentMalaysia

Therearenumbersofguidelinesandstandardsinordertoobtaina
product’swhole-lifeenvironmentalcostwhichoneofitisLifeCycle
Assessment,(Mari,2007).Itisaprocessofquantifiedandevaluatedof
overallcomponentandenvironmentalflowsinasystem,(Mari,2007).
LifeCycleAssessment(LCA)examinesthetotalenvironmentalimpact
ofamaterialineverysteporphaseofitslifestartingfrom obtaining
rawmaterialsallthewaythroughmanufacturetowardstheendoflife
whetherbeendisposeorrecycle,(Mari,2007).InMalaysia,lifecycle
assessmentofmaterialinMalaysiacontextcanberetrievedthrough
LCAMalaysiadatabasewhereitisaweb-accessplatform launched
bySIRIM in2011forpractitionersandwould-bepractitionersofLCA,
usersofLCAresultsandtheMalaysianpublic.Forthisstudy,thedata
ofenergy coefficientused isretrieve from Life Cycle Assessment
Malaysia.

25

2.6EffectofRecyclinginTotalEmbodiedEnergy

Recycling can give benefitson environmentsuch asembodied
energysaving,naturalresourcessaving,GHG emissionreductionand
coulddecreaseuseoflandforresourcesextractionandlandfills.The
benefitsmayvarydependsontheform ofrecyclingandmaterials.
However,afewconsiderationshavetobetakenascertainprocessof
recycling materialsmay consume higherembodied energy than
producing from raw materials.One ofthe considerationsisthe
transportation.Transportismostlythemajorfactorfortheincreasein
environmentalthroughrecyclingprocess(Thormark,2001).

The significance oftransportation energydependson the gross
energy saving,the weightofthe materials,the distance to the
recycling factory and the transportlogistic (Thormark,2001).By
reducingtheneedoftransportation,therecyclingcouldgivebenefits
onenvironmentalespeciallyonnaturalresourcesandmanufacturing
energysaving.

Figure2.5:Embodiedenergyuseinnorecyclingandrecycling
(Thomark,2001)

Figure2.5showntheembodiedenergyconsumedofnorecycling
materialand recycling materialwhere the negative valuesisthe
reductionofenergyuse.Itcanbeconcludedthat,therearestrong
indicationsforembodiedenergyreductionofmaterialsbyrecycling
butafew considerationshavetobetakenintoaccountespecially
related to the transportation of the material and types of
manufacturingprocessoftherecyclingmaterial(Thormark,2001).

26

LITERATUREREVIEW

2.7 ReuseandRecycleMaterialsApplicationin
BuildingDesign

Therearetwoaspectofthepotentialinreuseandrecyclematerial;
thecontributiontothereductionoftotalembodiedenergyproduced
duringtheconstructionprocessandoneofthesolutionsinreduction
numberofwastegeneration.Therearethreestagesofabuildinglife
whichistheinitialstage,themiddlestageandtheendstagewhere
theroleofreusedandrecyclematerialsinarchitecturalapplication
canbeseen(Thormark,2001).Theinitialstageisthestartingpointsof
building constructionwhere the materialselection,materiallocality
andmethodofconstructionarecontributetotheembodiedenergy.
Atthisstage,reuse and recycle materialplaysa role in reducing
embodied energy produced during the construction (Bolden,
Abu-LebdehandFini,2013).

Reuse and recycle materials whetheritis from domestic or
constructionwaste,requiresmallreprocessingenergyorevenitcan
beno reprocessing atall.Infact,reusematerialsmayofferbetter
benefitsonenvironmentalsince there isno environmentalimpacts
associated with reprocessing.There are variouswaysin integrate
reuse and recycle materials in architectural application. The
application can be categorize bytype ofwaste which are from
construction and demolition waste such as concrete block,
aluminium,steelstructureandtimberframeaswellasdomesticwaste
suchasplastic bottle,glassbottle,and tires.(Bolden,Abu-Lebdeh
andFini,2013).

Figure2.6:PlasticwasteoutsideillegalrecyclingfactoryatKuala
Langat(TheStar,2018)

27

Figure 2.6 showsthe plastic waste waspiled up outside illegal
recyclingfactorywhereitcanleadtocleanlinessandhealthissueto
surrounding neighborhood. According to Housing and Local
GovernmentMinisterZuraidaKamarudin,Malaysiahasimported1.8
milliontonnesofplasticfrom 33countriessince2015includingplastic
bottles.Toovercometheproblem,thereuseofplasticbottleaspart
ofarchitecturalapplicationmaycontributetothereductionoftotal
wastegeneration.

Accordingtothe“YourHomeDesignforLifestyleand theFuture
TechnicalManual”byReardon,almostwastematerialscanbereuse
and recycle.Asexample,100% ofsteeland aluminium can be
recyclewheretheirembodiedenergycanreduceupto72%forsteel
and 95% from steeland itisalso can be dissemblesand reused
(Reardon,2008).Anothermaterialcanbereuseandrecycleisglass
windows.According to Reardon,glasswindow canbe reuse and
recycled where it has 20% reduction in embodied energy as
compared to virgin glass(Reardon,2008). The reuse glasshasa
potentialtobeasaggregateforconcrete.

Besidesthat,timberalsoisoneofthemostpopularreusedmaterials
whereeventuallyitcanalsoberecycledintoparticleboard(Munn
andSoebarto,2004).Aboveall,theseareonlysomeoftheexamples
ofreuseandrecyclematerialsasbuildingmaterialalternative.There
aremuchmorepotentialandinnovativewaythatcanbeexploredin
thefuture.

28

BUILDING CASESTUDY

2.8.1TheMicroLibrary,Bandung,Indonesia

TheMicrolibrarywasdesignbyShauArchitectasthefirstprototype
foraseriesofsmalllibrarieswhichitintendstobuildacrossIndonesia.
ThelibrarylocatedatTamanBimainBandungwherethelocationis
surrounded byvillage neighborhood and nearto the airport.The
building construction are made from simple steel structure
constructionmethod whicharemadefrom I-beamsand concrete
slabs.Itisraised offthe ground where the positionisabove anold
stage(Archdaily,2016)

In orderto respond with climatic forces,the architectcreate a
sustainableapproachofnaturalventilationbycreating a pleasant
indoorclimatewithouttheusemechanicalventilation.Theteam was
looking for local materials for façade design around the
neighborhoodcontextthatwerelow cost,enabletoactasshading
devicesandpromotecrossventilationtotheindoor.Atlast,theyfind
outthereisused plasticicecream containerbeing sold withinthe
area.Thereusecontainerhasapotentialinreducingtotalembodied
energyaswellassustainablefaçadematerialwhereitcangenerate
a pleasantindoorlightambience and actasnaturallightsbulb
(Archdaily,2016)

Figure2.7:Frontview ofTheMicroLibrary,Bandung(Archdaily,2016)

29

Figure2.8:Sectiondiagram ofTheMicroLibrary,Bandung
(Archdaily,2016)

Figure2.9:Thecontainerswereattachedtosteelstructureandtilted
(Archdaily,2016)

The façade wasmade from 2,000reused ice-cream containers
wheresomeofthebottom iscuttoopenforcrossventilation.The
containerswereplacedinbetweensteelsstructurefrom thefloorlevel
totheroofleveland angled outwardstoprovideaneffectiverain
screen.Toprotectfrom tropicalrainstorms,translucentslidingdoors
were mounted behind the façade where itcan be closed easily
duringtropicalstorm (Archdaily,2016).

30

BUILDING CASESTUDY

2.8.2TheBottleHouse,Bandung,Indonesia

TheBottleHouseislocatedinNorthernBandung,Indonesiawitha
siteareaof373squaremeters.Thehouseisdividedinto3zones.The
firstzonefeaturestheguestpavilion,whilethesecondzoneconsistsof
living room and bedroomsand the third zone consistofgarage,
diningroom,kitchenandlibraryarea(ArchitecturalDigest,2009).The
maincharacterofthishouseistheuseofreuseglassbottleasthepart
ofarchitecturalelement.Theteam takesaboutsixmonthperiodto
collect30,000reuseglassbottlesfrom thedumpinggroundwhichwas
usedinnovativelyinthehousedesign.Thereuseglassbottleswereuse
perimeterwallsurrounding the house,interiorwall,and actsas
window wall(ArchitecturalDigest,2009).

Figure2.10:Exteriorview oftheBottleHouse
(ArchitecturalDigest,2009)

31

Figure2.11:Sectiondiagram ofairventilationoftheBottleHouse
(ArchitecturalDigest,2009)

Oneofthepotentialofusingreuseglassbottleisitscharacteristic
which enablesnaturalbreeze to penetrate in between bottles
connectionand allowing indoorgetfulldaylighting.However,this
glassbottlemayalsoincreasetheheatgainfrom west.Toovercome
theproblem,thebottleglasswallisdesigninachessboardpatternby
alternatingpanelsofbottleandoperableglasswindow toallow air
ventilation(ArchitecturalDigest,2009).

Figure2.12:Glassbottlesasthemainarchitecturalimageofthe
building(ArchitecturalDigest,2009)

32

BUILDING CASESTUDY

2.8.3PlasticBottleSchool,Guatemala

HugItForwardisoneoforganizationwhostartsaninitiativetobuild
a schoolmade ofpetbottle wallespecially in ruralarea of
Guatemala.Theyfacilitateaprogram tobuildaschoolinruralarea
with a low costconstruction while atthe same time create an
awarenessaround thearea toimproved wastemanagement.The
classrooms were constructed by using pet bottle stuffed with
inorganictrashorsand.Duringtheconstructionprocess,theentireof
communitieswilljoin togetherto build theirschooland promote
responsiblesenseoftheirowneducationspace.

Figure2.13:Petbottleconstructioncomponent
(HugItForward,2015)

The construction ofclassroom isusing the method ofpostand
beam construction.Thefoundation,beams,andcolumnsweremade
from reinforcedconcrete.Toconstructaclassroom,around3,500pet
bottlebricksareneededwhereallcommunitymemberofthearea
willparticipateincollectingthereusepetbottlewithinthearea.

33

Figure2.14:Activeparticipationfrom thecommunityincludingthe
children(HugItForward,2015)

Table2.5:Comparisonofplasticbottlewallandbrickwall
(Mokhtaretal.,2016;RubyaP,2016;Dominguez,2017)

34

LITERATUREREVIEW

Table 2.5showsthe comparison ofplastic bottle and brickwall
whichtoanalyzethebenefitsofpetbottleapplicationaspartofwall
system.Petbottlebrickalsoknownasecobricksmaybecomethe
solution ofthe increase numberofplastic waste generation.The
awarenessand educationofthe potentialto reuse petbottle may
contributetothewastereductionaswellascontributeinlowerdown
thetotalembodiedenergyofthebuilding.Furthermore,thesebricks
canreduceahigheramountofconstructioncostaswellaseasyto
constructbyanyone.Overall,petbottlebrickisa good solutionin
reducinglow embodiedenergyofabuildingaswellascostefficient
andsolvevariousofenvironmentalproblem.

2.9SummaryandConclusion

Thischapterhaspresentedanddiscussedtheunderstandingonthe
subjects related to solid waste management in Malaysia,the
definitionofembodiedenergyaswellasvariousstrategieshasbeen
identified byusing reuse and recycle materialasbuilding material
alternatives.Itisachallengingprocesstocreateawarenessamong
people to collectand classifyeachtype ofdomestic waste asour
society stilllackofexposure towardsthe potentialofreuse and
recyclesmaterialsasbuilding materials.From the case study,the
awarenesstowardsutilizationofreusesandrecyclesmaterialasmain
elementin building design outside Malaysia isincreasing asthey
already started to integrate reuse and recycle materialin their
architecturalapplication

Theintegrationofglassbottleandicecream plasticcontaineras
buildingfaçadeatHouseBottlebyRidwanKamilandMicroLibraryby
ShauArchitectinBandung showsaninnovative wayto fullyutilize
wastematerial.Thebuildingsalsocreateanawarenesstothelocal
surrounding thatthere ismuchpotentialto explore byusing local
wastematerial.Lastly,theapplicationofpetbottleasbrickatPlastic
BottleSchoolatGuatemalaisoneofthegoodexamplesinreducing
embodiedenergyofabuildingaswellascontributestothereduction
ofplasticwaste.Theprogram alsohassuccessfullyhelpedchildrenin
ruralarea byprovidingschooland createsawarenesstowardsthe
benefitofreuse and recycles.In conclusion,the finding ofthe
literature willbe developed forthe studyofvariablesand willbe
explaininresearchmethodologychapter.

35


Click to View FlipBook Version