BAB 9 : GARIS LURUS
KECERUNAN m = Y2 Y1
X2 X1
Tulis kordinat titik-titik yang diberi dan seterusnya cari kecerunan garis yang diberi
dalam satah Cartes berikut.
y
1.
7
P( )
6
5 Kecerunan PQ
4 =
3
)
Q(
2
1
01 2 34 567 x
2.
y
2 P( )
1
-2 - 1 0 12 34 5 x Kecerunan PQ
-1 =
-2
-3
Q( )
-4
The Sttraight Line
3. y
4.
7
6 P( )
5 Kecerunan PQ
4 =
3
2 Kecerunan PQ
1 =
Q( )
01 2 34 567 x
P( ) y
4
3
2
1
-4 - 3 -2 -1 0 1 23 x
-1 Q( )
-2
The Sttraight Line
5. y
P( ) 4
Q( ) Kecerunan PQ
3 =
2
1 x
-4 - 3 -2 -1 0 1 2 3
-1
-2
6.
y
4
P( )
3
2
1
-4 - 3 -2 -1 0 1 23 x
-1 Q( )
-2
The Sttraight Line
MENENTUKAN KECERUNAN GARIS LURUS Latihan
1.) ( 2,1) dan (4,3)
Contoh
1) (1,2) dan (3,4)
42 2
m= = =1
31 2
------------------------------------------------------------------------------------------------------------
2) (-1,2) dan (3,4) 2.) (- 2,1) dan (4,3)
42 2 1
m= = =
3 (1) 4 2
------------------------------------------------------------------------------------------------------------
3) (1,-2) dan (3,4) 4.) (2,-1) dan (4,3)
------------------------------------------------------------------------------------------------------------
5) (-1,-2) dan (3,4) 6.) (-2,-1) dan (4,3)
------------------------------------------------------------------------------------------------------------
7) (-1,-2) dan (-3,-4) 8.) (-2,-1) dan (-4,-3)
------------------------------------------------------------------------------------------------------------
9) 1 ) dan ( 3 ,0 ) 13 1 1
(0, 10) (- , ) dan ( ,- )
22
22 2 2
The Sttraight Line
PINTASAN
● y-pintasan (x = 0)
●
x-pintasan (y = 0)
Pintasan-x y=0
Cari pintasan-x dany pintasan-y bagi garis lurus yang diberi dalam satah Cartes berikut.
1.
7
6
5
4 pintasan-x =
3 pintasan-y =
2
1
01 2 34 567 x
2.
y
2
1
-2 - 1 0 1 2 34 5 x pintasan-x =
-1 pintasan-y =
-2
-3
-4
The Sttraight Line
3. y x pintasan-x =
4. pintasan-y =
7
6 pintasan-x =
5 pintasan-y =
4
3
2
1
01 2 34 567
y
4
3
2
1
-4 - 3 -2 -1 0 1 2 3 x
-1
-2
The Sttraight Line
5. pintasan-x =
y pintasan-y =
4 x
3
2
1
-4 - 3 -2 -1 0 1 2 3
-1
-2
MENCARI PINTASAN-X MELALUI PERSAMAAN GARIS LURUS
Contoh Latihan
1) y 2x 4 1) y 3x 6
y 0 0 2x 4
4 2x
2x 4
x 4 2
2
x- intercept = -2
---------------------------------------------------------------------------------------------------------------------
2) y 5x 2 2) y 2x 5
y 0 0 5x 2
2 5x
5x 2
x 2
5
5
x-intercept =
2
---------------------------------------------------------------------------------------------------------------------
The Sttraight Line
3) y 4x 5 4.) y 3x 1
---------------------------------------------------------------------------------------------------------------------
5) 2y 3x 6 6) 2y 2x 5
7) y 2 x 6 8) y 2 x 4
3 5
---------------------------------------------------------------------------------------------------------------------
9) 2 y 3 x 12 10) 3y 1 x 3
5 9
--------------------------------------------------------------------------------------------------------------------
11) 2y x 12 12) 3y 3x 2
The Sttraight Line
MENCARI PINTASAN-X MELALUI PERSAMAAN GARIS LURUS
Pintasan-y x=0
Example Exersice
1) y 3x 8
1) y 2x 6
x = 0 , y = 2(0) + 6
y=6
y- intercept = 6
---------------------------------------------------------------------------------------------------------------------
2) y 2x 7 3.) y 3x 9
---------------------------------------------------------------------------------------------------------------------
4) y 2 x 6 5) y 1 x 6
3 2
---------------------------------------------------------------------------------------------------------------------
6) y 2 x 7 7) y 2 x 10
3 5
---------------------------------------------------------------------------------------------------------------------
Example
8) 2 y 3 x 12 9) 3y 1 x 21
5 9
3
X = 0, 2y = (0) + 12
5
2y = 12
y=6
y – intercept = 6
--------------------------------------------------------------------------------------------------------------------
10) 2y x 12 11) 3y 3x 2
The Sttraight Line
……………………………………………………………………………………………………..
PERSAMAAN GARIS LURUS : y = mx + c
kecerunan pintasan-y
MENENTUKAN PERSAMAAN GARIS LURUS MELALUI TITIK DAN KECERUNAN
Example Exercise A
1) (2,7) and m = 3 1) (4,9) and m= -2
y = mx + c
7 = 3(2) + c
7=6+c
7–6=c
c=1
Equation of a straight line , y = 3x + 1
……………………………………………………………………………………………………….
2) (-3,5) and m = 4 2) (-1,7) and m = 5
y = mx + c
5 = 4(-3) + c
5 = -12 + c
C= 5 + 12
=17
Equation of a straight line, y = 4x +17
……………………………………………………………………………………………………….
1 3) (-5,11) and m = -2
3) (4,-9) and m =
2
y = mx + c
1
-9 = (4) + c
2
-9 = 2 + c
-9 – 2 = c
c = -11
1
equation of a straight line, y = x - 11
2
The Sttraight Line
……………………………………………………………………………………………………….
2 3
4) ( -3,-5) and m = 5) (3,-7) and m = -
3 4
2 4
6) (-1,-4) and m = 7) (-10,10) and m = -
5 5
…………………………………………………………………………………………….
1 4
8) (0,-3) and m = 9) (-6,-2) and m =
2 3
The Sttraight Line
PERSAMAAN GARIS LURUS JUGA BOLH DIPEROLEHI DENGAN
MENGGUNAKAN FORMULA
Example y –k = m (x –h)
1) (2,7) and m = 3 Exercise B
y 7 3(x 2) 1) (4,9) and m= -2
y 7 3x 6
y 3x 6 7
y 3x 1
……………………………………………………………………………………………………….
2) (-3,-5) and m = 4 3) (-1,7) and m = 5
……………………………………………………………………………………………………….
1 5) (5,-11) and m = -2
4) (4,-9) and m =
2
……………………………………………………………………………
The Sttraight Line
6) ( -4,-5) and m = 2 3
3 7) (4,-7) and m = -
y (5) 2 (x (4)) 4
3
y 5 2 (x 4)
3
3( y 5) 2(x 4)
3 y 15 2x 8
3 y 2x 8 15
3y 2x 7
…………………………………………………………………………………………………….
2 4
8 (-1,-4) and m = 9) (10,10) and m = -
5 5
…………………………………………………………………………………………….
1 4
10) (0,-3) and m = 11) (-5,-2) and m =
2 3
The Sttraight Line
PERSAMAAN GARIS LURUS – MELALUI 2 TITIK \ 2 KOORDINAT
Step 1 : Cari kecerunan
Step 2: Dapatkan pintasan-y
Step 3 : Tulis persamaan garis lurus dalam bentuk y = mx + c
Step 1 : Find the gradient
Step 2: Find the y- intercept
Step 3 : Write down the equation in a form of y = mx + c
Example Exercise
1. (2,1) and (4,3)
(-1,2) and (3,4)
42 2 1
m= = =
3 (1) 4 2
y = mx + c
1
4 = (3) + c
2
3
4= +c
2
3
C= 4 -
2
1
=2
2
15
Equation of a straight line, y = x +
22
Or 2y = x + 5
---------------------------------------------------------------------------------------------------------------------
2) (-1,2) and (3,4) 3) (-2,1) and (4,3)
---------------------------------------------------------------------------------------------------------------------
The Sttraight Line
4) (3,-5) and (-2,5) 5) (3,-7) and (-1,3)
6) (0,-5) and (2,1) 7) (-1,5) and (-3,-7)
---------------------------------------------------------------------------------------------------------------------
8) ( 1 ,4 ) and (3,-6) 9) ( 1 ,5 ) and ( 1 ,3)
2 33
---------------------------------------------------------------------------------------------------------------------
The Sttraight Line
PERSMAAN GARIS LURUS MELALUI DUA GARIS YANG SELARI
Garis yang selari mempunyai kecerunan yang sama dan sebaliknya
Example Exercise
1) (1,2) and y = 3x – 4 1) (0,-3) and y = -2x + 5
m3
y 2 3(x 1)
y 2 3x 3
y 3x 3 2
y 3x 1
………………………………………………………………………………………………
2) (2,4) and y + x = 5 2) (0,6) and y = 5x -1
y = -x + 5
m 1
y 4 1(x 2)
y 4 x 2
y x 2 4
y x 6
.............................................................................................................................................................
3) (8,-5) and 5y + 20x = -2 3) (2,3) and 2x -5y = 12
5y = -20x -2
20x 2
y=
5
2
y = - 4x -
5
m 4
y (5) 4(x 8)
y 5 4x 32
y 4x 32 5
y 4x 37
………………………………………………………………………………………………
The Sttraight Line
4) (5,2) and y = x -3 5) (1,8) and 3x + y =4
………………………………………………………………………………………………
6) (3,4) and y = 2x -2 7) (0,-3) and 2x + y -5 = 0
………………………………………………………………………………………………
8) (-1,3) and y = 3x + 1 9) (4,0) and y = 3x - 11
………………………………………………………………………………………………
10) (4,-5) and y = -2x + 3 11) (3,4) and 4y – 2x = 3
The Sttraight Line
EXAMINATION FORMAT QUESTION EXAMPLE 1
(i) gradient AB= 4 2 2 1
A(0,4) 02 2
B(2,2) (ii) x-intercept for AB
y 0
O the equation of AB
C y 4 1(x 0)
Diagram 1 y 4 x
0 4 x
x4
x-intercept = 4
(iii) the equation of AC
M AC M OB 20 1
20
y 4 1(x 0)
y4 x
y x4
EXERCISE
1.Base on diagram 2
(i) gradient PQ
P(0,6)
Q(3,5)
(ii) x-intercept for PQ
RO
Diagram 2
(iii) the equation of PR
The Sttraight Line
A(2,6) 2 Base on diagram 3, find
(i) the gradient of AB
E (ii) the equation of ECF
B(-3,3) C(5,4)
F
(iii) x-intercept for ECF
Diagram 3
3 In the diagram 4, OP 6 units.
(i) find the gradient of PR
R Q(7,8)
OP (ii) find the y-intercept of PQ
Diagram 4
The Sttraight Line
B 4 The diagram 5, AB is a straight
line.
(i) state the y-intercept of AB
(ii) find the equation of of AB
O4 Diagram 5
-6
A
P(0,6) 5. In diagram 6, the gradient of PQ
is 3 . Line
OQ 2
Diagram 6 RS is parallel to the line PQ and
passes through a point (-5,3). Find
(i) the coordinate of Q.
ii) the equation of RS
The Sttraight Line
6. In diagram 7, line DE is parallel to the line GF.
y
D(-4,6)
G(h,4)
x
EO F
Diagram 7
Given the equation of straight line DG is x + 3y = 14 and the gradient of GF is -2,
Find
(a) the value of h,
(b) the coordinate F
( c) the equation of straight line DE
[ 5 marks]
7. In diagram 8, the gradient of the straight line MN is 2
y 3
● N(6, p)
M
3
x
-5 L Diagram 8
Find
(a) the value of p
(b) the equation of straight line LN
The Sttraight Line
8. In diagram 9, JKLM is a trapezium and JK is parallel to ML
y K (2,5)
L(4,3)
J(-4,2)
x
MO
Diagram 9
Find
(i) the x-intercept for the straight line JK
(ii) the equation of the straight line ML
(iii) the coordinate M
The Sttraight Line