The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Markov Approximation for Combinatorial Network Optimization Minghua Chen Joint work with Soung‐Chang Liew, Ziyu Shao, CaihongKai, and ShaoquanZhang

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2017-05-19 06:10:03

Markov Approximation for Combinatorial Network Optimization

Markov Approximation for Combinatorial Network Optimization Minghua Chen Joint work with Soung‐Chang Liew, Ziyu Shao, CaihongKai, and ShaoquanZhang

Exam

□ Wireless network utilit

– Configuration f: indepe

□ Channel assignments in

– Configuration f: one co
channel assignments

□ Path selection and flow

– Configuration f: one co
selected paths 

□ Peering in Peer‐to‐Pee

mples

ty maximization New  

endent set perspective

n WiFi networks

ombination of 

w control New 
perspective 
ombination of 
and new 
er systems… solutions

26

Channel Assignmen

– 3 WiFi channels available
– N access points: each choo
– Channel‐configuration affe

□ Goal: assign channels distri

nt in WiFi Networks

oses one channel
ects Interference

ibutedly for good performance

27

Challenges That Mak

□ The number of configu

– Example: 8 APs, 3 chan

□ Assignment needs to c

ke the Problem Open

urations are exponential 

nnels, 38 = 6561

consider traffic demand

28

Problem Fo

maxf ∈F XN

i=

□ Channel configuration f =[
□ fi: the channel used by AP

□ Rif : downlink throughp
under configuration f

□ Ui (): utility function to

ormulation

XN ³ ´
Ui Rif

=1

[f1, f2, …, fN] 
P i

put observed by AP I 

o guarantee fairness 

29

Markov App

maxp≥0 X XN ³
s.t. pf Ui R

fX∈F i=1

pf = 1.

f ∈F

□ Product form solution:

pf∗ ³ PN U
exp β
i=1
=
C

proximation

´ 1 X pf log pf
Rif − β

f ∈F

:

³ ´´
Ui Rif , ∀f ∈ F .

30

Distributed Mark

□ Only allow transitions in
channel

□ One transition rate desig
³ ³ ´´
β PN Rif
exp Ui
i=1
C qf,f 0 =

à XN ³ ´!
exp −β Ui Rif

i=1

□ Recent general results: c
replace the global inform

kov Chain Design

nvolve one AP chaning its 

gn: ³ ³ ´´
β Rif
exp PN Ui 0

i=1
= C qf 0,f

! Ã XN ³ ´!
β Rif
exp Ui 0

i=1

can use local estimate to 

mation

31

Distributed Markov C

□ Initially each AP randomly 

□ Each AP counts down with 
variable with meanÃ

XN
exp β U

i=1

– Our recent general results:
to replace the global inform

□ Count‐down expires

– Randomly hop to a differen
– Reinitiate another count‐do

Chain Implementation

 picks a channel

 an exponential random 

³ ´!
Ui Rif
: robust to using local estimate 
mation

nt channel
own

32

Simulatio

□ Eight APs, random netw

– 3 channels available
– Each AP on average has 3
– ∆ T: aggregate throughp
– ∆ U: aggregate utility ga
– β: 10

on Results

works (10 instances)

3 neighbors
put gap
ap

33

Conclusions an

Combinatorial network 
optimization

• Top‐down approach
• Combinatorial problems

• Markov approximation 
for designing distribution 
solutions 

nd Future Work

Combinatorial network 
problems

Formulation

Log‐sum‐exp 
approximation
Distributed Monte Carlo 
Markov Chain

34

Conclusions an

□ Convergence (mixing) time

– Connections to statistical p

□ Alternative Markov chain d

– Alternative parameters des
– How about non‐time‐rever

□ Alternative approximation?

– May lead to a different set 

□ Applications

– Multipath/P2P routing [ano
paper]

– P2P VoD topology control [

nd Future Work

e, and applications

physics (Glauber dynamics, etc.)

designs

sign
rsible Markov chain

?

 of design framework

other example in INFOCOM 10 

[submitted]

35

Minghua Chen :: http://www.ie.cuhk

Thank you

k.edu.hk/~mhchen/

36


Click to View FlipBook Version