The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by lorshinilorsh, 2021-05-24 09:18:43

Multiple Linear Regression

Multiple Linear Regression

Multiple Linear Regression
= 0 + 1 1 + 2 2 + ⋯ + +

Dummy Variable

= 0 + 1 1 + 2 2 + 3 3 + ⋯ +? ? ?

Dan secara rumus Multiple linear regression ditulis
= 0 + 1 1 + 2 2 + 3 3 + 4 4

Perlu diketahui, bahwa untuk menentukan suatu hasil
dependent value, TIDAK SEMUA independent value
mempengaruhi nilai dari dependent
Artinya dalam program harus DIPILIH independent value
manakah yang paling mempengaruhi hasil dari dependent
value.
Proses pemilihan ini dibagi menjadi

1. All in
2. Stepwise regression

2.1. Backward elimination

Step 1: Select a significance level to stay in the
model (eg SL=0.05)
Step 2: Fit the full model with all possible
predictors

Step 3: Consider the predictor with the highest p-
Value. If P>SL go to step 4, otherwise your model
is ready
Step 4: Remove the predictor
Step 5: fit the model without this variable and back
to step 3
2.2. Forward selection
Step 1: Select a significance level to enter the model
(e.g. SL=0,05)
Step 2: Fit all simple regression model y=xn Select
the one with the lowest P-value
Step 3: Keep this variable and fit all possible
models with one extra predictor added to the one(s)
you already have
Step 4: Consider the predictor the lowest P-value. If
P < SL go to the step 3, other wise your previous
model is ready
2.3. Bidirectional elimination
Step 1: Select a significance level to enter and to
stay in the model eg: SLenter=0.05, SLstay=0.05
Step 2: Perform the next step of forward selection
(new variable must have P < SLenter to enter)
Step 3: Perform all step of backward elimination
(old variables must have P < SLstay to stay)
Step 4: No new variables can enter and no old
variables can exit
3. Score Comparison
Step 1: Select a criterion of goodness of fit
Step 2: construct all possible regression models 2n-1 total
combinations
Step 3: Select the one with the best criterion


Click to View FlipBook Version