PYQ Mathematics
Paper 2
SM025/2
2018/19
REVISION 3
Prepared by : Lim Hwee Cheng
QUESTION 1
(a) Evaluate x(1 x)8 dx by using a suitable
substitution.
(b) Find the area of the region boundedby the
curve y x cos x and x axis between x 0
and x . Give your answer in term of
2
Solution 1(a)
u 1 x du dx x 1 u
x(1 x)8 dx (1 u)u8(du)
u9 u8 du
u10 u9 C
10 9
1 x10 1 x9 C
10 9
Solution 1(b)
2 u x dv cosx dx
A x cos x dx du dx v sin x
0
2
x cos x dx x sin x sin x dx 2
0
0
x sin x cos x02
sin cos 0 cos 0
2 2 2
1 unit2
2
QUESTION 2
Solve dy 2(x 1) y2 0,
dx
Given that y 1 when x 1.
Express y in term of x.
Solution 2
dy 2(x 1) y2 0 1 x2 2x C
dx y
dy 2(x 1) y2 when x 1, y 1
dx
1 12 2 C
dy 1
y2
2( x 1) dx C2
1 2( x2 x) C 1 x2 2x 2
y2 y
y x2 1 2
2x
QUESTION 3
Use Newton - Raphson method to solvethe
equation ex x 2 0 correct to four decimal
places by taking x 1as the first approximat ion.
Solution 3
f (x) ex x 2 , f '(x) ex 1
x1 1
x2 1 e1 1 2 1.16395
e1 1
x3 1.16395 e1.16395 1.16395 2 1.14642
e1.16395 1
x4 1.14642 e1.14642 1.14642 2 1.14619
e1.14642 1
x5 1.14619
The solution is x 1.1462
QUESTION 4
An ellipse Ax2 y2 Bx Cy 1 0 passes
through points 0,1,1,1and 2,1
(a) Find the equation of the ellipse in the standard
form. Hence, statethe centre and vertices of the
ellipse.
(b) Find the foci of the ellipse
(c) Sketch the graph of the ellipse
Solution 4 (a)
At0,1 0 12 0 C(1) 1 0
C 2
At1,1 A (1)2 B C(1) 1 0
A B 4 - - - -(1)
At2,1 4A 12 B(2) C(1) 1 0
4A 2B 0
2A B 0 - - - -(2)
(2) (1) A 4
from (1) B 8
4x2 y2 8x 2y 1 0
4x2 8x y2 2y 1 0
4 x 12 1 (y 1)2 11 0
4x 12 ( y 1)2 4
x 12 ( y 1)2 1
4
Center 1,1 Vertices 1,1 2 1,1,1,3
Solution 4 (b)
c2 4 1
c 3
Foci 1,1 3 1,1 3 , 1,1 3
Solution 4 (c) V 1,3
y F 1,1 3
C 1,1 x
F 1,1 3
V 1,1
QUESTION 5
The line L1 and L2 passesthrough the point
R2,4,3and S8,5,9in the direction of
2 i 3 j 4k and i 2 j 3k, respectively
~~ ~ ~~~
(a) State the equations for line L1 and L2
in the vector form. Hence, calculate the acute
angle between the line L1 and L2 .
QUESTION 5
(b) Find the equation of plane containing the line
L1 and the point 7,3,5in the Cartesian form.
(c) Determine whether the line L2 is parallel to the
plane x 5y 3z 5
Solution 5 (a)
L1 : r1 2 i 4 j 3 k t 2 i 3 j 4 k
~ ~ ~ ~ ~ ~
L2 : r2 8i 5 j 9k s i 2 j 3k
~
~ ~ ~ ~ ~
2 6 12
cos1
22 (3)2 42 12 (2)2 32
cos1 20 14 6.98
29
Solution 5 (b) n v AP
P 7,3,5 ~~
7 2 5 i jk
AP 3 4 7 n 2 3 4
5 3 8 ~
5i7 j8k 5 7 8
~~~ n 4i 4 j k
~ ~ ~~
Solution 5 (b)
r (4 i 4 j k) (7 i 3 j 5k) (4 i 4 j k)
~ ~~ ~ ~~ ~ ~~
4x 4y z 28 12 5
4x 4y z 21
Solution 5 (c)
n i 5 j 3k v i 2 j3k
~~ ~ ~ ~~ ~ ~
n v (i 5 j 3k) (i 2 j 3k)
~~ ~ ~ ~ ~ ~ ~
n v 110 9
~~
n v 0
~~
thus,the line L2 is parallel to the plane.
QUESTION 6
TABLE 1shows the frequency distribution of the
diameter of 100 pebbles which are measured to
nearest millimeter (mm)
Diameter (mm) Frequency
10-14 22
15-19 20
20-24 25
25-29 15
30-34 18
QUESTION 6
Calculate the
(a) mean
(b) mode
(c) median
Solution 6
Diameter Frequency x fx C.F
(mm)
22 12 264 22
10-14 20 17 340 42
15-19 25 22 550 67
20-24 15 27 405 82
25-29 18 32 576 100
30-34
fx 2135
Solution 6
(a) mean 2135 21.35
100
(b) mode 19.5 5 (5) 21.17
5 10
(c) median 19.5 50 42 (5) 21.1
25
QUESTION 7
A committee of 5 is to be selected from a group
of 7 men and 6 women. How many different
committeescouldbe formedif
(a) there is no women in the committee?
(b) a particular man must be in the committee and
the remaining has equal number of men
and women?
(c) at least 3 men are in the committee?
Solution 7
(a) 7C56C0 21
(b) 1C1 6C2 6C2 225
(c) 7C3 6C2 7C4 6C17C5 6C0
525 210 21
756
QUESTION 8
The probabilities of events X and Y are given
as P(X ) 3 , PX ' Y 31 and PX Y 2
5 45 25
(a) Show that P(Y ) 9
35
(b) Find PX Y '
Solution 8(a)
P(X ) 3 , PX ' Y 31 and PX Y 2
5 45 25
PX ' Y PX 'Y
P(Y )
31 P(Y ) P(Y ) P( X Y )
45
14 P(Y ) 2
45 25
P(Y ) 2 45 9 ( Shown)
25 14 35
Solution 8(b)
PX Y ' P( X ) P(Y ') P( X Y ')
PX Y ' 3 1 9 3 2
5 35 5 25
PX Y ' 144
175
QUESTION 9
A discrete random variable X has the probability
distribution function
f (x) x 1, x 2,3,4
16
kx, x 6,8
0, otherwise
QUESTION 9
(a) Show that k 1
56
(b) Hence, calculate P3 X 8.
(c) Determine the values of E(X ) andVar(X )
Thus,evaluate Var( 3X 1).
Solution 9
(a) f (x) 1 (b) P(3 X 8)
3 4 5 6k 8k 1 P(X 3) P(X 4) P(X 6)
16 16 16 456
14k 1 16 16 56
4 75 0.6696
k 1 (shown) 112
56
Solution 9(c)
E( X ) xf (x)
E(X ) 2 3 3 4 4 5 6 6 8 8 233
16 16 16 56 56 56
E(X 2 ) 22 3 32 4 42 5 62 6 82 8 21
16 16 16 56 56
Var( X ) 21 233 2 3.69
56
Var( 3X 1) 3Var(x)
3(3.69) 11.07
QUESTION 10
Thenumberof batteriessold at a servicecenter
on any particular day follow a Poisson distribution
with mean
(a) If the probability of selling exactly 4 batteries
divided by theprobability of selling exactly
2 batteries is 225 ,show that 15
12
QUESTION 10
(b) On any particular day,calculate the probability
that theservicecentersells between5 and14
batteries.
(c) Given that the probability of selling less than k
batteries on any particular day is 0.917, find the
valueof k
(d) Find the probability that exactly 40 batteries
are sold in 2 working days.Give your
answer in four decimal places.
Solution 10(b) & (c)
(b) X ~ P (15) (c) P(X k) 0.917
P(5 X 14) P(X k) 1 P(X k)
P(X 6) P(X 14) P(X k) 1 0.917
0.9972 0.6368 P(X k) 0.083
0.3604 fromtable
P(X 21) 0.083
k 21
Solution 10(a)
P(X 4) 225 2 225
P(X 2) 12 15
15
e 4
4! 225
12
e 2
2!
2 225
12 12
Solution 10(d)
X ~ P (30)
P(X 40) e30(30)40 0.0139
40 !
Or Refer PoissonTable
P(X 40) P(X 40) P(X 41)
P(X 40) 0.0463 0.0323
P(X 40) 0.0140