Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
Q1. 2003/2004 (b) 2x 1 1 2x 1 1
By substituting a 3x , solve the equation x2 x2
9x 3 28(3x1) . 2x 1 1 or 2x 1 1 0
x2 x2
9x 3 28(3x1) 2x 1 1 0 2x 1 (x 2) 0
x2
32x 3 28(3x ) 2x 1 (x 2) 0 x2
3 x2 3x 1 0
x3 0 x2
Let U 3x x2
U 2 3 28U ( multiply 3 both sides) x 2 x 3 2 x 1
3 Final sulotion 3
3U 2 28U 9 0
3U 1U 9 0
U 1 @U 9
3
3x 31 @ 3x 32
x 1 x2
Q2. 2003/2004 Interval form : (,2) (2, 1) (3,)
Solve the following inequalities 3
(a) x 2 x 12 0 Q3. 2003/2004
(b) 2x 1 1 Solve 3ln 2x 3 ln 27
x2
3ln 2x 3 ln 27
(a) x 2 x 12 0 3ln 2x 3 ln 33
(x 3)(x 4) 0 3ln 2x 3 3ln 3
4 3
ln 2x 1 ln 3
x-3 + ln 2x ln 3 1
x+4 ++ + ln 2x 1
(x – 3)(x + 4) + 3
Solution : (,4) (3, ) : 2x e1 x 3e
Edited by limhweecheng 3 2
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
Q4. 2004/2005
Solve x5e3ln x 4x 21 .
x5e 3ln x 4x 21 Solution : (0,)
x e5 lnx3 4x 21
x5 x 3 4x 21 (b) 1 log 2 x 6log x 2 0
x2 4x 21 0
(x 7)(x 3) 0 1 log 2 x 6 log 2 2 0
x 7 or x 3 log 2 x
Q5. 2004/2005 1 log 2 x 6 x 0
Solve the following inequalities: log 2
(a) 4x 9 12
Let y log 2 x
x 1 y 6 0
(b) 1 log 2 x 6log x 2 0
(c) x 5 1 y
2x 4 y2 y 6 0
y
(a) 4x 9 12
x ( y 2)( y 3) 0
y
4x 9 12 0
x 3 y 0 or y2
3 log 2 x 0 log 2 x 2
4x2 12x 9 0 23 x 20 x 22
x 1 x 1 x4
8
(2x 3)2 0
x
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
c) x 5 1 (x2 6)(x2 2) 0
2x 4
x2 6 @ x2 2
x 6
x5 1 or x 5 1
2x 4 2x 4
x 5 1 0
x 5 1 0 2x 4 Q7. 2005/2006
2x 4 3x 1 0
2x 4 Solve the following inequalities
9x 0
2x 4 a) 7x 2 x 6 x 2 4
b) x 3 3
x 1
(2,9] [ 1 ,2) a) 7x 2 x 6 x 2 4
Final Solution : 3
6x2 x 2 0
(2x 1)(3x 2) 0
Solution : 2 , 1
3 2
[ 1 ,2) (2,9]
3 x3 3
b) x 1
Q6. 2005/2006
Find the values of x satisfying the equation x 3 3 or x 3 3
log 4 (x4 4) 1 log 4 (x4 4) x 1 x 1
log 4 (x4 4) log 4 4 log 4 (x2 4) x 3 3 0 x330
log 4 (x4 4) log 4 4(x2 4) x 1 x 1
x4 4 4(x2 4)
x 3 3(x 1) 0 x 3 3(x 1) 0
x4 4x2 12 0 x 1 x 1
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
6 2x 0 4x 0 Q9. 2006/2007
x 1 x 1 Obtain the solution set for 2x 1 x2 4
2x 1 x2 4 or 2x 1 x2 4
(1,3) (0,1) x2 2x 3 0 x2 2x 5 0
(x 3)(x 1) 0 x (2) (2)2 4(1)(5)
2(1)
1.45 @ 3.45
Final solution = (0,1) (1,3)
x 3 x 1 x 1.45 x 3.45
Final Solution set:
Q8.
By substituting a 2x , solve the equation
4x 3 2x2 .
4x 3 2x2 {x : x 1.45 x 1}
2x 2 3 2x 22 Q10. 2006/2007
2x 2 3 4 2x (a) Find the solution et of the inequality
a2 4a 3 0 2 1 1
3 2x x 4
(a 1)(a 3) 0
a 1 or a 3 (b) Solve the following inequalities equation for all
x is real numbers. Write your answer in set
2x 1 or 2x 3x form .
2x 20 x log 2 3 4 3 2x 1
x0 x log 3 1 x
log 2
x 1.59
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
(a) 1 1 Final solution:
3 2x x 4
Set solution : {x : x 6 x 0}
1 1 0 Q11. 2007/2008
3 2x x 4 Given that 81y 3(2y3)x and 218y6x 64xy .
(x 4) (3 2x) 0 Find the values of x and y.
(3 2x)(x 4)
3x 1 0
(3 2x)(x 4)
Solution set : {x : 4 x 1 x 32} 81y 3(2y3)x
3
34 y 3(2 y3)x
4 y (2 y 3)x
(b) 4 3 2x 1 x 4 y (1)
1 x 2y 3
3 2x 3 218y6x 64xy
1 x
3 2x 3 or 3 2x 3 218y6x 26xy
1 x 1 x 18 y 6x 6xy
3 2x 3(1 x) 0 3y x xy
3 2x 3(1 x) 0
1 x 1 x 3y x( y 1)
5x 0 6x 0 x 3y (2)
1 x 1 x y 1
x 1 x 0 x 6 x 1 (1) = (2)
4y 3y
2y 3 y 1
4y2 4y 6y2 9y
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
2 y25y 0 x 2x 1 0
y(2 y 5) 0
(x 4)(2x 1)
y0 @ y5
2
From (1), y 0, x 0
y 5, x5
2
Q13. 2007/2008 (4,1] (1 ,2]
Solve the following inequalities: 2
(a) x 1
(b) x 2
x 4 2x 1 x4
(b) x 2
x 2 and x 2
x4 x4 x4
(a) x 1 x 20 x 20
x 4 2x 1 x4 x4
x 1 0 x8 0 3x 8 0
x 4 2x 1
x4 x4
x(2x 1) 1(x 4) 0
(x 4)(2x 1)
2x2 2x 4 0
(x 4)(2x 1)
2x 2x 1 0
(x 4)(2x 1)
Final solution: {x : x 8 x 8}
3
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
Q13. 2008/2009 x 2 10 x2
Solve the equation 3log x 3 log 3 3 x 10 x 2 10 x2 or x 2 10 x2
3 x 2 10 x2 x2 x 12 0
x2 x 8 0 (x 3)(x 4) 0
3log x 3 log 3 3 x 10
3
3 log x 3 1 log 3 x 10 x 1 1 4(1)(8)
3 3 2
3 log 3 3 1 log 3 x 10 x 2.37,3.37
log 3 x 3 3
3 log 3 x 10
log 3 x 3 3
Let U log 3 x
3 U 10 multiply 3U both sides
U3 3
9 U 2 10U
U 2 10U 9 0 Final solution: (,3) (2.37,) interval form
U 9U 1 0
U 9 @ U 1 Q15. 2009/2010
log 3 x 9 x 39 Solve the equation 32x 10 3x1 1 0
log 3 x 1 x 3
3x2 10 3x 1 0
3 Let u 3x
Q14. 2008/2009 u2 10 u 1 0
Determine the interval of x satisfying the 3
inequality x 2 10 x2
3u 2 10u 3 0
3u 1u 3 0
u1 @ 3
3
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
3x 31 3x 3 Q18. 2010/2011
x 1 x 1
Solve the equation ln x 3 2
Q16. 2009/2010 ln x
Determine the solution set for 2x 3 5 ln x 3 2
x ln x
2x 3 5 Let u ln x
x
u 3 2
2x2 5x 3 0 u
x
u2 2u 3 0
2x 3x 1 0
u 1u 3 0
x
u 1 or u 3
u 1, u 3
ln x 1 or ln x 3
xe x e3
Q19. 2010/2011
Solution set : {x : x 0 1 x 3} Solve the following inequalities
2
(a) 3x2 x 4 0 (b) x 1 2
Q17. 2009/2010 2x2 3x 2 x3
Solve 2 5 x x
(a) 3x2 x 4 0
25 x 2 x 2 2x2 3x 2
4 25 10x x2 x2
3x 4x 1 0
3x2 40x 100 0 2x 1x 2
3x 10x 10 0
,10 10 , Solution : , 4 1 ,1 2,
3 3 2
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
(b) x 1 2 Q21. 2011/2012
x3 (a) Solve the equation
x 1 2 and x 1 2 logx 4 2 log 3 1 log x
x3 x3
2
x 1 2 0 x 1 2 0 (b) find solution set for x 3 2
x3 x3
3x 5 0 x 1
x3
x7 0 (a)
x3
log x 4 2log 3 1 log x
2
log x 4 log 32 log x 1
2
9x 4
log 1
x
2
9x 4 10
x
Final solution: ,7 5 , 2
3 9x 36 10x 5x
2
4x 36
Q20. 2011/2012 x 9
Solve 32x1 28(3x ) 9 0
32x1 28 3x 9 0 x3 2
(b) x 1
3x 2 3 28 3x 9 0 x3 2 and x 3 2
x 1 x 1
Let m = 3x x 3 2 0
x 1
3m2 28m 9 0 x 3 2 0 x 3 2x 2 0
x 1
m 93m 1 0 x 3 2x 2 0 x 1
3x 1 0
m 9 or m1 x 1 x 1
3x 9 32 3 x5 0
x 1
3x 3-1
x 2 x 1
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
1 1
2x 1 x 2
x 2 2x 1 0
2x 1x 2
x3 2 0
2x 1x
Solution set: {x : x 5 x 1} Solution set : {x : 2 x 1 x 3}
3 2
Q22. 2012/2013 Q24. 2012/2013
Find the value of x which satisfies the equation
log 25 x log 2x 2 3 log 21 x
log 25 x log 2x 2 3 log 21 x
log 5 x1 x 3 (a) Solve x2 x 3 3
x 2
2
5 x1 x 23 (b) Find the solution set of the inequality
x 2 2x2 9x 4 4
x2
x2 4x 21 0
(x 7)(x 3) 0
x 3 @ x 7 (a) x2 x 3 3
x 3 x2 x 3 3 or x2 x 3 3
Q23. 2012/2013 x2 x 0 x2 x 6 0
x 0,1 x 2,3
Determine the solution set of the inequality x 2,0,1,3
1 1
2x 1 x 2
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
(b) 2x2 9x 4 4 U2U 1 0
x2
U 0 @ U1
2x2 5x 12 0 2 1
2
x 2 log 3 x 0 @ log 3 x
2x 3x 4 0 x 30 1
x 2 x 1, x 1
x 32
x 3
Q26. 2013/2014
Solve the equation 22x2 2x1 2x 23
22x2 2x1 2x 23
Solution set : {x : x 4 2 x 3} 2x 2 2x 2 2x 8
2
22
Q25. 2013/2014 Let U 2x
Find the value of x which satisfies the equation U 2 2U U 8
4
log 9 x log 3 x2 , x >1
U 2 3U 8 0
log 9 x log 3 x2 4
U 2 12U 32 0
U 4U 8 0
log 3 x log 3 x2 U 4 @ U 8
log 3 9
2x 4 2x 8
log 3 x log 3 x2 2x 22 @ 2x 23
log 3 32
x2 x3
log 3 x log 3 x2
2
Q27. 2013/2014
Let U log 3 x Find the solution set of 2 3x x 3
U U2 2 3x x 3
2
2 3x2 x 32
2U 2 U 0
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
Squaring both sides Q29. 2014/2015
2 3x2 x 32 Solve the inequality 1 1
6 x x 1
4 12x 9x2 x2 6x 9
8x2 18x 5 0 1 1
6 x x 1
2x 54x 1 0 1 1 0
6 x x 1
Solution set : {x : 1 x 5} (x 1) (6 x) 0
42 (6 x)(x 1)
2x 7 0
(6 x)(x 1)
Q28. 2014/2015
Solve the equation 3y 31 y 12
3y 31 y 12
3y 3 12 {x :1 x 7 x 6} set solution
3y 2
Let U 3y , 1, 7 6, Interval form
U 3 12 2
U
Q30. 2014/2015
U 212U 27 0
(a) Solve the following equation
U 3U 9 0 6x2 x 11 4
U 3 @ U 9 (b) Find the solution set for the ineqaulities
3y 9 2 x 2 5
3y 3 x 4
y 1 @ 3y 32
y2 (a) 6x2 x 11 4
6x2 x 11 4 or 6x2 x 11 4
6x2 x 15 0 6x2 x 7 0
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
(2x 3)(3x 5) 0 (6x 7)(x 1) 0 y log 4 y log 3 2 log 4
y 2 log 4 9.638 ( 3 dp)
x 3 or x 5 x 7 or x 1
23 6 log 4 log 3
The set solution x { 5 , 7 ,1, 3} Q32. 2015/2016
36 2
Solve the equation 2 log 2 x 15 log x 2
(b) 2 x 2 5 2 log 2 x 15 log x 2
x 4
x 2 2 log 2 x 15 log 2 2
x 4 log 2 x
3 0
4x 10 0 2 log 2 x 15 x
x4 log 2
Let U log 2 x
2 U 15
U
U 2 2U 15 0
U 3U 5 0
U 5 @ U 3
The solution set: {x : x 5 x 4} log 2 x 5 log 2 x 3
2
x 25 @ x 23
Q31. 2015/2016 x 1 x8
32
4y2 1
Evaluate the solution of 3 y up to
three decimal places. Q33. 2015/2016
4y2 1 (a) Solve the inequalities x 1 2
3 y x3
(b) Show that . Hence, find the
interval for x so that
4y2 3y
2x 42x
8x
log 4 y2 log 3y 13 2x 36 0
( y 2) log 4 y log 3
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
(a) x 1 2 Thus, 2x 4 or 2x 9
x3
x 1 2 or x 1 2 2x 22 or x log 2 9
x3 x3 x2 x 3.17
x 1 2 0
x 1 2 0 x3 The interval of the solution is
x3 (,2] [3.17,)
x 1 2(x 3) 0 x 1 2(x 3) 0 Q34 : 2016/2017
x3 x3
3x 5 0 Determine the values of x which satisfy the
x7 0 x3 equation 32x1 4(3x ) 9 .
x3
32x1 4(3x ) 9
3x 2 4(3x ) 9
3
U 2 4U 9
3
U 2 12U 27 0
U 3U 9 0
U 3 @ U 9
Solution : 7,3 3, 5 3x 3 3x 9
x 1 @ 3x 32
3
x2
(b) 2x 42x 2x 24x 2x4x3x 22x shown Q35. 2016/2017
8x 23x
2x 42x (a) If 7 3 5 x y
8x (b) Solve the equation log 2 x log 4(3x 4) 0
13 2x 36 0
22x 13 2x 36 0
(a) 7 3 5 x y
Let U = 2x
Squaring both sides
U 2 13U 36 0 7 3 5 2 x 2
U 4U 9 0 y
From sign table , we get U 4 or U 9 7 3 5 x 2 xy y
x y 2 xy
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
By comparing, By comparing, x2 (3x 4)
x y7
y 7 x (1) x2 3x 4 0
2 xy 3 5 x 1x 4 0
4xy 9(5)
x 1(ignore) @ x 4
4xy 45 (2)
Q36. 2016/2017
4x(7 x) 45
28x 4x2 45 (a) Solve the following equation 3 7, x 4
4x2 28x 45 0 x4
(2x 5)(2x 9) 0
(b) Find the solution set for the inequality
x5 @ x9 4x x4 , x3
22 x3
(a) 3 7
x4
When x 5 , y 7 5 9 3 7 or 3 7
2 22 x4 x4
When x 9 , y 7 9 5 3 7(x 4) 3 7(x 4)
2 22 7x 31 7x 25
x 31 x 25
Since x y 0
Thus x 9 and y 5 is the solution only. 7 7
22 Thus, x 25 , 31
7 7
(b) log 2 x log 4(3x 4) 0 (b) 4 x x 4
x3
log x log 2 (3x 4) 0 4x x40
log 2 4 x3
2 4 x x(x 3) 4(x 3) 0
x3
log x log 2(3x 4) 0 4 x x2 3x 4x 12 0
2 x3
2
log x log 2 (3x 4)
2
2
2log 2 x log 2(3x 4)
log 2 x2 log 2 (3x 4) x2 2x 8 0
Edited by limhweecheng x3
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
x2 2x 8 0 Solve the equation 3 log 9 x log 3 x2
x3
3 log 9 x log 3 x2
(x 4)(x 2) 0
x3
3 log 3 x log 3 x 2
log 3 9
3log 3 x log 3 x2
2
Let U log 3 x
The solution set is x : x 4 2 x 3 3U U 2
2
3U 2U 2
Q37. 2017/2018 U (2U 3) 0
Solve the equation 32x1 16 3x 5 0 U 0 @ U 3
2
32x1 16 3x 5 0
32x 3 16 3x 5 0 Therefore,
log 3 x 0 @ log 3 x 3
2
x 30
Let U 3x x 1 3
x3 2
3U 2 16U 5 0 x 5.20
3U 1U 5 0
U 1 @ U 5 Q39. 2017/2018
3 Find the interval of x for which the following
inequalities are true.
3x 1 3x 5
3 (a) 5 1 0
x3
3x 31 @ x log 3 5
(b) 3x 2 2
x 1 x log 5 1.46 2x 3
log 3
Q38. 2017/2018
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
(a) 5 1 0 Final solution :
x3 8, 3 3 , 4
5 (x 3) 0 2 2 7
x3
2x 0
x3
Solution is (,3) [2,) interval form
(b) 3x 2 2
2x 3
3x 2 2 or 3x 2 2
2x 3 2x 3
3x 2 2 0 3x 2 2 0
2x 3 2x 3
3x 2 2(2x 3) 0 3x 2 2(2x 3) 0
2x 3 2x 3
x8 0 7x 4 0
2x 3 2x 3
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
(53)8 ((35)4)2 0 32 2
(53)6−2 ((35)3)2
17
=
5 8 −(6−2 ) 5 8−(−6)
(3) = (3)
5 10 −6 5 14 41/ 2018/2019
(3) = (3)
. Solve
Comparing : (a) 6x 1 x 3
(b) Determine the solution set of x which
10 − 6 = 14 satisfies the inequality
= 2 2 x
x 1 x 3
(b) 1 8 (a) √ + − √ =
4 2x x
(√ + = (3 + √ )2
18
4 − 2 − ≥ 0 )
− 8(4 − 2 )
6 + 1 = 9 + 6√ +
(4 − 2 ) ≥ 0
17 − 32 5 − 8 = 6√
(4 − 2 ) ≥ 0
(5 − 8)2 = (6√ )2
25 2 − 80 + 64 = 36
25 2 − 116 + 64 = 0
(25 − 16)( − 4) = 0
= 16 @ = 4
25
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
Checking the answer
When = 16
25
√ + − √ = √ + − √ = ≠ 3
( )
Therefore ≠ 16
25
When = 4,
√ + − √ = √ ( ) + − =
Therefore = 4 is the solution.
(b) 2 x
x 1 x 3
2 42. 2019/2020
+ 1 − + 3 < 0
Solve the following:
2( + 3) − ( + 1) (a) 3 52x 1 x1
( + 1)( + 3) < 0
252 200
− 2 + + 6 (b) x 4 x2 x 12
( + 1)( + 3) < 0
2 − − 6
( + 1)( + 3) > 0
( + 2)( − 3)
( + 1)( + 3) > 0
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
43. 2019/2020
Solve the following
(a) log2 2x 2log4(x 4)
(b) 2 x 3 1
2x 1
Edited by limhweecheng
Chapter 2 : Equations, Inequalities & Absolute Mathematic
Values sm015
1 1 < ≪ 7
< 2 2 4
Final Solution : ∪
{ : < ∪ < ≪ }
Edited by limhweecheng