Chapter1 : Number System Mathematic
sm015
Q1. 2003/2004 (a) z i 2 i 1 2i
2i 2i 5 5
Given that the complex number u, v and w such that
z 12 2 2 5
11 1 . If v 1 3i and (b) 5 5 5
u vw w 2 i , express u
2
in the form of a bi , where a and b are real Arg(z) = tan1 5 2.03rad
numbers. 1
5
11 1 1 1 Q3. 2004/2005
u v w 1 3i 2 i Given z1 1 3i and z2 2 5i .
1 1 3i 1 2 i (a) Express 1 1 in the form of a bi .
1 3i 1 3i 2 i 2 i z1 z2
1 3i 2 i (b) Find the argument of z2 in radian
10 5
1 5i
u 10
u 10 (a) 1 1 1 1
5i z1 z2 1 3i 2 5i
1 1 3i 1 2 5i
10 5 i 1 3i 1 3i 2 5i 2 5i
5i 5i 1 3i 2 5i
1 9 4 25
50 10i 49 37 i
26 290 290
25 5 i (b) z2 2 5i
13 13
Arg( z2 )= tan 1 5 1.190 rad
Q2. 2003/2004 2
Given a complex number z i Q4. 2004/2005
2i
Given z x yi , where x and y are real numbers. If
(a) State z in the form of a bi z i 2 , show that 3x2 3y2 8x 6y 7 0
(b) Find the modulus and argument of z
z 1i
.
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
zi 2 = 3 2i
z 1i 2 i 6i 3i2
(x yi) i 2 3 2i 5 5i
(x yi) 1 i 5 5i 5 5i
x ( y 1)i 2 = 1 1 i
(x 1) ( y 1)i 2 10
z1 z2 1 2 12 26 0.510
z1z2 2 10 10
x2 ( y 1)2 2 Q6. 2006/2007
(x 1)2 ( y 1)2 Given the complex number z and its conjugate
z satisfy the equation zz 2z 12 6i . Find the
x2 ( y 1)2 2 (x 1)2 ( y 1)2 possible value of z.
Squaring both sides Let z x yi , z x yi
x2 ( y 1)2 4 (x 1)2 ( y 1)2 zz 2z 12 6i
x2 y2 2y 1 4 x2 2x 1 y2 2y 1 (x yi)(x yi) 2(x yi) 12 6i
x2 y2 2x 2yi 12 6i
3x2 3y2 8x 6y 7 0 Comparing
x2 y2 2x 12 ---- (1)
Q5. 2005/2006 2y 6
y 3 (2)
Given two complex number z1 1 3i and Substitute eq(2) into eq(1)
x 2 32 2x 12
z2 2i , express z1 z2 in the form of x2 2x 3 0
z1 z2 (x 3)(x 1) 0
x 3@ x 1
a bi , where a and b are real numbers.. Hence
determine z1 z2 .
z1 z2
z1 z2 (1 3i) (2 i)
z1z2 (1 3i)(2 i)
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
Thus z 3 3i @ z 1 3i z1 5 4 i 5 1 2i
z2 1 2i 1 2i
Q7. 2006/2007 4 i 5 10i`
5
An equation in a complex number system is given 4 i 1 2i
1 1 3 3i
z1
by z z1 z2 where z1 1 2i and z 9 9 18 3 2
z2 2 i . Find
a) the value of z in the Cartesian form a bi tan 1 3 tan 11
3 4
b) the modulus and the argument of z.
z 3 2 cos i sin 4`
4
a) z z1 1 z2 1 Q9. 2008/2009
z1
1 1 Given z1 1 i and z2 4 2i . Express z12
(1 2i) (2 i) 1 2i z1 z2
1 3i 1 2i in the form of a+bi, where a and b are real
10 5
numbers. [5 marks]
11i
10 10 . z12 2i 3 3i
z1 z2 3 3i 3 3i
b) | z | 1 2 1 2 50 0.141 6i 6i 2
10 10 50 9 9i 2
Arg(z)= 1 rad 6 6i
tan 1 10 18
1 4
10 1 1i
33
Q8. 2007/2008
Q10. 2008/2009
If z1 4i and z2 1 2i , find z1 5 . Given that z x iy , where x and y are the real
z2 numbers and z is the complex conjugate of z. Find
Hence, express the answer in polar form.
[6 marks]
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
the positive values of x and y so that 1 2 3 i . 2 = 8 + 6
zz = +
2 = 2 − 2 + 2
[6 marks]
12 1 2 2 − 2 = 8 -------- (1)
z z x yi x yi
3x yi 2 = 6
x2 y2 = 6 = 3
3x y 2 -------(2)
x2 y2
x2 y2 i
3x 3 , x2 y y2 1 2 − ( 3 2 = 8
x2 y2
)
3x 3 x2 y2 , x2 y2 y 4 − 8 2 − 9 = 0
x x2 y2 ( 2 − 9)( 2 + 1) = 0
Then x y 2 = 9 , 2 + 1= 0
y2 y2 y
2y2 y 0 ∴ = ± 3 , = ± 1
y2 y 1 0 = 3 + , = −3 −
When y 0 , x 0 ( undefined ) (b) When z 3 i
When y 1 , x 1 z 32 12 10
22
Thus
y 1 , x 1 Arg (z) tan 1 1 0.322 rad
22 3
Polar form z 10cos0.322 i sin 0.322
When z 3 i
Q11. 2009/2010 z (3)2 (1)2 10
(a) Given a complex number z a bi which Arg(z) tan 1 1 2.82 rad
satisfy the equation z 2 8 6i . Find all the 3
possible values of .
Polar form z 10cos(2.82) i sin(2.82)
[6 marks]
Q12. 2010/2011
(b) Hence, epress z in polar form. [4 marks]
(a)
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
(a) Given two complex numbers z1 2 i and
z2 1 2i . Express z12 1 in the form x iy , (c) Find z1z2 . Hence, show that z1 z2 z1z2 .
z2 [6 marks]
where x and y are real numbers and z2 is the (a) z1 5 3i and z2 2 i
conjugate of z2 [4 marks]
(b) Given 1 k z1
z1
(b) Hence, find the modulus of z12 1
z2
Method 1
[2 marks]
(a) i) z12 1 2 i 2 1 1 1 2i 1 k(5 3i)
z2 2i 1 2i 5 3i
3 4i 1 2i k 1
5 (5 3i)(5 3i)
15 20i 1 2i 1
5 34
16 18i Method 2
5
1 1
16 18 i z1 5 3i
55
1 5 3i
5 3i 5 3i
(b) z12 1 16 2 18 2 4.82 1 (5 3i)
z2 5 5 34
1 z1, k 1
34 34
(c)
Q.13 2011/20 z1z2 (5 3i)(2 i)
10 5i 6i 3i 2
Given two complex numbers z1 5 3i and 13 i
z2 2 i
z1 z2 13 i
(a) State z1 and z2 [1 mark]
z1 z2 (5 3i)(2 i)
(b) Determine the value of k if 1 k z1 10 5i 6i 3i 2
z1 13 i
z1 z2 z1 z2
[3 marks]
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
Q14. 2012/2013 (a) p q 1 5 i
4 2i 4 2i 2
Given a complex number z 1 3i .
p 4 2i q 4 2i 1 5 i
Determine the value of k if z2 k 1 4 2i 4 2i 4 2i 4 2i 2
z
4 p 2 pi 4q 2qi 1 5 i
. 16 4 16 4 2
[7 marks]
[ 7 marks] 4 p 4q 2 p 2q 1 5 i
Method 1 20 20 2
Comparing
z 2 2 2 3i
k 1 k 1 1 3i k k 3i 4( p q) 1
z 1 3i 4 20 .........(1)
1 3i
pq5
2 2 3i k k 3i 2( p q) 5
44 20 2 ------- (2)
k 2 k 8 p q 25
4
Method 2 Solve eq (1) & eq (2)
p 15 & q 10
kz z 2 (1 3i)(2 2 3i)
(2 2 3i 2 3i 6i 2 ) (b) 143x1 82x3 7
8 23x1 73x1 26x9 7
Q15. 2012/2013
(a) Find the values of p and q if 29x10 73x
log 29x10 log 73x
p q 1 5i
4 2i 4 2i 2 9x 10log 2 3xlog 7
(b) Given log10 2 m and log10 7 n . Express x (9x 10)m 3xn
in term of m and n if (9m 3n)x 10m
143x1 82x3 7
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
x 10m 10m z has a pure imaginary part only.
9m 3n 3(3m n)
(c) z(2 i) (z 1)(1 i)
Q16. 2014/2015
Let z a bi be a non-zero complex number (a bi)(2 i) (a bi 1)(1 i)
(a) Show that 1 z
2a ai 2bi b a ai bi b 1 i
z z2 2a (2b a)i (a 1) (a b 1)i
(b) Show that if z z , then z is a complex
By comparing
number with only an imaginary part. 2a a 1
(c) Find the value of a and b if a 1
2b a a b 1
z(2 i) (z 1)(1 i) . 3b 3
b 1
Q17. 2015/2016
(a) 1 a 1 a bi a bi Given z1 3 3i and z2 3 2i .
z bi a bi a2 b2
z a2 b2 (a) Write z1 in polar form.
z 2 a2 b2 (b) Express z1 z 2 i3 in the form a bi ,
13 z2
z a bi a,b R
z2 a2 b2
Therefore, 1 z shown. (a) z1 3 3i
z z2 z1 32 (3)2 18 3 2
(b) Given z z Arg (z) tan 1 3
3 4
a bi (a bi)
Polar form z1 3 2 cos i sin
a bi a bi 4 4
2a 0
a0 (b) z1z2 (3 3i)(3 2i) 3 15 i
13 13 15 13
z a bi 0 bi bi
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
i3 i Q19. 2017/2018
z2 (3 2i)
Given a Complex number z 2 i
i 3 2i
3 2i 3 2i (a) Express z 1 in the form a bi , where a and b are
z
= 2 3i
13 13 real number.
i3 2 3 i (b) Obtain the z 1 . Hence, determine the values of
z2 13 13 z
Therefore z1 z 2 i3 3 15 i 2 3 i real numbers and if
13 z2 13 13 13 13
i z 1 z 1 2
5 12 i z z
13 13
(a) z 1 (2 i) 1`
Q18. 2016/2017 z 2i
(2 i) 1 2 i
Solve for p and q where p q , such that 2i 2i
(2 i) (2 i)
( p qi) 3 16 i3 4 1
3i 2i 2 i
55
8 6i
55
16 16 1 4i (b) 8 2 6 2 2
i3 i2 i i z1 5 5
z
( p qi) 3 16 i3
3i i z 1 z 1 2
z z
( p qi) 3 4i i
285 6 i2
3i 5
( p qi) 3i(3 5i)
2 64 96 i 36
p qi 15 9i 25 25 25
p 15, q 9
56 192 i 56 , 192
Edited by limhweecheng 25 25 25 25
Chapter1 : Number System Mathematic
sm015
i z 1 z 1 2 Q21. 2019/2020
z z
Given the complex numbers z1 i and
2 8 6 i 2
5 5 z2 2 i 3
(a) Express z12 and z2 in the from a bi ,
2 64 96 i 36 where a, b .
25 25 25
(b) From part 1(a), find W z12 z2 . Hence, find
56 192 i 56 , 192 z1
25 25 25 25
W and arg W
(c)
Q20. 2018/2019 (a) z12 (i)2 1 2 1
Given z1 2 3i and z2 4 4i . Express z2 i3 z2 2 i 3
z1 z2
(b) W z12 z2 1 (2 i 3)
in Cartesian form. z1 i
1i 3
z2 i3 4 4i i3 , i3 i i
z1 z2 2 3i (4 4i)
1i 3 i
4 4i (i) i i
2 3i (4 4i)
i 3i 2
4 4i i i2
2 3i 4 4i
i 3(1)
4 4i 2 3i i 4 4i (1)
2 3i 2 3i 4 4i 4 4i
3i
20 4i 4 4i W ( 3)2 12 2
4 9 16 16
20 4 i 1 1 i Arg W = tan 1 1
13 `13 8 8 3 6
147 45 i
104 104
Edited by limhweecheng
Chapter1 : Number System Mathematic
sm015
1i 3 i
i i
i 3i 2
i2
i 3(1)
(1)
3i
W ( 3)2 12 2
Arg W = tan 1 1
3 6
Edited by limhweecheng