Question 1 : 2018/2019
Use Newton - Raphson method to solve the
equation ex − x − 2 = 0 correct tofour decimal
places by taking x =1as the first approximat ion.
Jens Martensson 2
f (x) = ex − x − 2 , f '(x) = ex −1
x1 = 1
x2 =1− e1 −1− 2 = 1.16395
e1 −1
x3 = 1.16395− e1.16395 −1.16395− 2 = 1.14642
e1.16395 −1
x4 = 1.14642− e1.14642 −1.14642− 2 = 1.14619
e1.14642 −1
x5 =1.14619
Thus , the solution is x = 1.1462
Suggested Answer Jens Martensson
Question 2 : 2018/2019
An ellipse Ax2 + y2 + Bx + Cy +1 = 0 passes
through points (0,1),(1,−1)and (2,1)
(a) Find the equation of the ellipsein the standard
form.Hence,state the centreand vertices of the ellipse.
(b) Find the foci of the ellipse
(c) Sketch the graph of the ellipse
Jens Martensson
At (0,1) 0 +12 + 0 + C(1) +1 = 0 Jens Martensson
C = −2
At (1,−1) A + (−1)2 + B + C(−1) +1 = 0
A + B = −4 - - - -(1)
At (2,1) 4A +12 + B(2) + C(1) +1 = 0
2A + B = 0 - - - -(2)
(2) − (1) A = 4
from (1) B = −8
Suggested Answer
4x2 + y2 −8x − 2y +1= 0
4x2 −8x + y2 − 2y +1= 0 Center (1,1)
4 (x −1)2 −1 + (y −1)2 −1+1= 0
4(x −1)2 + ( y −1)2 = 4 Vertices (1,1 2) = (1,−1),(1,3)
(x −1)2 + ( y −1)2 = 1
4
c2 = 4 −1 ( ) ( ) ( )Foci 1,1 3 = 1,1− 3 , 1,1+ 3
c= 3
Suggested Answer Jens Martensson
y V (1,3)
( )F 1,1+ 3
C(1,1) x
( )F 1,1− 3
V (1,−1)
Suggested Answer Jens Martensson
Question 3 : 2018/2019
The line L1 and L2 passes through the point R(2,4,−3) and
S(8,−5,9)in the direction of 2 i − 3 j+ 4k and i − 2 j+ 3k, respectively
~~ ~ ~~~
(a) State the equations for line L1 and L2 in the vector form.
Hence, calculate the acute angle between the line L1 and L2 .
(b) Find the equation of plane containing the line L1 and the point (7,−3,5)
in the Cartesian form.
(c) Determine whether the line L2 is parallel to the plane x + 5y + 3z = 5
Jens Martensson
L1 : r1 = 2 i + 4 j− 3 k + t 2 i− 3 j+ 4 k
L2 :
~ ~ ~ ~ ~ ~
r2 = 8i− 5 j+ 9k+ s i − 2 j+ 3k
~
~ ~ ~ ~ ~
2 + 6 +12
= cos−1
22 + (−3)2 + 42 12 + (−2)2 + 32
( )( ) = cos−1 20 14 = 6.98
29
Suggested Answer Jens Martensson
P (7,−3,5) n = v AP
7 2 5 ~~
AP = − 3 − 4 = − 7
i jk
5 3 8 n= 2 −3 4
= 5i−7 j+8k ~
~~~ 5 −7 8
n = 4i+ 4 j+ k
~ ~ ~~
Jens Martensson
r • (4 i + 4 j+ k) = (7 i − 3 j+ 5k) • (4 i + 4 j+ k)
~ ~~ ~ ~~ ~ ~~
4x + 4 y + z = 28 −12 + 5
4x + 4y + z = 21
Jens Martensson
Solution 5 (c)
n = i+5 j+3k v = i− 2 j+3k
~~ ~ ~ ~~ ~ ~
n• v = (i + 5 j+ 3k) • (i − 2 j+ 3k)
~~ ~ ~ ~ ~ ~ ~
n• v = 1−10 + 9
~~
n• v = 0
~~
thus, the line L2 is parallel to the plane.
Jens Martensson
Question 4 : 2018/2019
A discrete random variable X has the probability distribution function
x +1, x = 2,3,4
16
f (x) = kx, x = 6,8
(a) Show that k = 1 0, otherwise
56
(b) Hence, calculate P(3 X 8).
(c) Determine the values of E( X ) and Var( X )
Thus, evaluate Var( 3X −1).
Jens Martensson
(a) f (x) =1 (b) P(3 X 8)
3 + 4 + 5 + 6k + 8k = 1 = P( X = 3) + P( X = 4) + P( X = 6)
16 16 16 =4+5+6
14k = 1 16 16 56
4 = 75 = 0.6696
k = 1 (shown) 112
56
Jens Martensson
E(X ) = xf (x)
E(X ) = 2 3 + 3 4 + 4 5 + 6 6 + 8 8 = 233
16 16 16 56 56 56
E( X 2 ) = 22 3 + 32 4 + 42 5 + 62 6 + 82 8 = 21
16 16 16 56 56
Var(X ) = 21− 2332 = 3.69
56
Var( 3X −1) = 3Var(x) = 3(3.69) = 11.07
Jens Martensson
Launch