SULIT
PROGRAM GEMPUR KECEMERLANGAN
SIJIL PELAJARAN MALAYSIA 2020
NEGERI PERLIS
SIJIL PELAJARAN MALAYSIA 2020 3472/2(PP)
MATEMATIK TAMBAHAN
Kertas 2
Peraturan Pemarkahan
Oktober
UNTUK KEGUNAAN PEMERIKSA SAHAJA
Peraturan pemarkahan ini mengandungi 19 halaman bercetak
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 2 3472/2
Sub Total
No. Solution and Mark Scheme Marks Marks
1(a) f ( x) = sin 2x sin x P1 2
2x P1
2
(b) 2 cot x sin2 x = *sin 2x
K1
LHS = 2 cot x sin2 x N1
= 2 cos x sin 2 x cot x = cos x K1
sin x sin x N1
= 2sin x cos x LHS = sin 2x
= sin 2x
= RHS
(c) 2 cot x sin2 x = f ( x) ...
6 cot x sin 2 x = 2 − 3x f ( x) = 2 − x N1
2π 3 2π
( )3 3x
2 cot x sin2 x = 2 − 2π
2 cot x sin2 x = 2 − x ... Sketch the straight line involving
3 2π x and y with *gradient or
*y-intercept correct.
Substitute into
Number of solutions = 5
f ( x) = 2 − x
3 2π
x 0 2π
y 2 −1
33
Number of solution = 5 37
SULIT
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis
SULIT 3 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
2(a) Let,
O = centre of the circle Find the radius of the circle P1
r = radius of the circle
Then, OA = OB = OC = OD = r r= x 2 + 42
2
x 2
r= 2 + 42
r = x2 +16 Area of circle − Area of rectangle K1
4
2
The area of the shaded region, = π * x2 +16 − 8x
4
L = πr2 − 8x L
x2 2 − 8x
L = π 4 +16
L = πx2 − 8x +16π (Proved) L = πx2 − 8x +16π (Proved) N1 3
4 4
(b) dL = 2πx − 8 = πx − 8 Find dL and equate to 0 K1
dx 4 2 dx
When L is minimum, dL = 0 πx − 8 = 0
dx 2
Then, πx − 8 = 0
2
x = 16 cm d2L K1
π Find dx2
d2L = π 0 π 0
dx2 2 2
The area of the shaded region is
minimum when x = 16 cm The area of the shaded region is
π
16 N1
minimum when x = π cm 3 6
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 4 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
3 π y − 2 π x = 15π P1
Arc PU = Arc ST = x 2
2
Then, y − 2 π x = 15π xy + π x2 = 3437.5π P1
2 2
y − πx = 15π ...
Area of the field, y =15π + πx P1
xy + π x2 = 3437.5π ...
2
From : y = 15π + πx ...
Substitute into Eliminate x or y (involving one
x (15π + πx) + π (15π + πx)2 = 3437.5 linear and one non-linear K1
equations in term of x and y)
2
3x2 + 30x − 6875 = 0 x (15π + πx) + π (15π + πx)2 = 3437.5
−(30) (30)2 − 4(3)(6875) 2
x = 2(3)
x1 = 43.13 x2 = −53.13 (Rejected) Solve the *quadratic equation K1
Formulae
y1 = 58.13π
x = 43.13 ; y = 58.13π // 182.64
−(30) (30)2 − 4(3)(6875)
x = 2(3)
a, b, c must be correct
x1 = 43.13 N1
x2 = −53.13 (Rejected)
y = 58.13π // 182.64 N1 77
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 5 3472/2
Sub Total
No. Solution and Mark Scheme Marks Marks
4(a) LHS = log2 P + log2 Q Use law loga b + loga c = loga bc K1 4
= log2 PQ log2 PQ
= log4 P 37
log4 2 Change to base 4 K1
= log4 P log2 4
log4 P
= (log4 P) 2 log4 2
= 2(log4 P)
= RHS (Proved)
Use law a logc b = logc ba K1
2log2 2
LHS = 2(log4 P) (Proved) N1
(b) 2x+1 3x−2 = 8 Use law ab ac = ab+c K1
2x 2 or 3x 3−2
2x 2 3x 3−2 = 8
2x 2 3x 1 = 8 Use law ac bc = (ab)c K1
9 ( 2 3)x
2x 3x = 36
(2 3)x = 36
6x = 62
x = 2
x = 2 N1
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 6 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
5(a) s1 = ( j1 + j2 )θ s1 = 31.5θ or j2 = 3.5θ (seen) P1
j1 + j2 = 28 + 3.5 = 31.5
Perimeter of the glued fabric 2(28) + (31.5)θ + 3.5θ = 105π + 56 K1
= 105π + 56 cm 4
4 θ = 2.3565rad N1
2( j1 ) + ( j1 + j2 )θ + j2θ = 105π + 56
4
2(28) + (31.5)θ + 3.5θ = 105π + 56 A1 = 1 31.52 2.3565
2
4
56 + 35θ = 105π + 56 or K1
4
A2 = 1 3.52 2.3565
35θ = 105π 2
4
θ = 105 ( 3.142 ) 2*A1 − *A2 K1
4 ( 35)
θ = 2.3565 rad 2309.37cm2 N1
Area of fabric needed
= 2 1 ( j1 + j2 )2 θ − 1 j22θ
2 2
1 31.52 2.3565 −
2
= 2
1
2 3.52 2.3565
= 2(1169.1186 −14.4336)
2309.37 cm2 66
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 7 3472/2
Sub Total
No. Solution and Mark Scheme Marks Marks
6(a) Syuhada's annual salaries form a 3
geometric progression with, r = 1.05 P1 2
a = 18000 (Year 2002) T6 =18000(*1.05)6−1 K1 27
r = 1.05 RM22973 N1
Annual salary in 2007 = T6
T6 = 18000(1.05)6−1
= 22973.07
Annual salary in 2007 = RM22973
(b) Annual salary in nth year exceed
RM36000,
Tn 36000 18000(*1.05)n−1 36000 K1
18000(1.05)n−1 36000
(1.05)n−1 2
(n −1) log10 1.05 log10 2 n = 16 N1
n −1 log10 2
log10 1.05
n 15.21
Thus the minimum value of n is 16
(c) The total salary for the years
2002 to 2007 = S6 ( )18000 *1.056 −1 K1
( )18000 1.056 −1 S6 = 1.05 −1
S6 = 1.05 −1
= 122434.43 RM122434 N1
Thus The total salary for the years
2002 to 2007 = RM122434
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 8 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
7(a)(i) At (h, 2),
2 = (h −1)2 +1
h = 2 N1
h2 − 2h = 0
1
h(h − 2) = 0
h = 0 (Rejected)
h = 2
(ii) y = ( x −1)2 +1
y2 = ( x −1)4 + 2 ( x −1)2 +1 Integrate π y2 dx
Solid volume generated,
= π 2 22 dx − π 2 y2 dx ( x −1)5 2( x −1)3 K1
00 K1
A1 = 5 + 3 + x
= π 2 4 dx − π 2 ( x −1)4 + 2 ( x −1)2 +1dx
00
( x −1)5 2( x −1)3 2 *2
2 x
= π 4 x 0 − + 3 + Use limit into
5 0
0
1 2 *( x −1)5 2( x −1)3
5 3 + + x
+ + 2 − 5 3
−
= π 4 (2) − 1 2
5 3
+ − + 0 ( )π
4 x 2 − *A1
0 K1
= π 8 − 43 − − 13
15 15
64 π unit3 N1
15
= 64 π unit3
15 4
(b)(i) Gradient of tangent of 1st curve,
dy = 4x − 5
dx 3(2 p − 3) = −1 K1
Gradient of tangent of 2nd curve,
dy = px − 3 p=4 N1
dx 3
When two curves intersect at the
right angle, 2
(4x − 5)( px − 3) = −1
At x = 2,
3(2 p − 3) = −1
6 p − 9 = −1
p= 4
3
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 9 3472/2
Sub Total
No. Solution and Mark Scheme Marks Marks
7(b)(ii) y1 = 4x − 5 dx Substitute (2, 3) into 4x − 5 dx K1 3 10
y1 = 2x2 − 5x + c 3 = 2(2)2 − 5(2) + c N1
N1
At point (2, 3), or
3 = 2(2)2 − 5(2) + c
Substitute ( 2, 3) into *4 x −3 dx
c=5 3
y1 = 2x2 − 5x + 5
y2 = 4 x−3 dx 3 = 2 (2)2 − 3(2) + c
3
3
2
y1 = 3 x2 − 3x + c
At point (2, 3), y = 2x2 − 5x + 5 or y = 2 x2 − 3x + 19
33
3 = 2 (2)2 − 3(2) + c
3
c = 19 y = 2x2 − 5x + 5 and y = 2 x2 − 3x + 19
3 33
y1 = 2 x2 − 3x + 19
3 3
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 10 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
8(a) X = Events to choose a good Harumanis
X ~ B (8, 0.85)
X = 0, 1, 2, 3, 4, 5, 7, 8 nCr (0.85)r (0.15)n−r K1
Probability that at least 6 Harumanis
are good, P ( X 6) P( X = 6) + P( X = 7) + P( X = 8) P1
= P( X = 6) + P( X = 7) + P( X = 8)
= 8C6 (0.85)6 (0.15)2 + 8C7 (0.85)7 (0.15)1 0.8948 N1
+ 8C8 (0.85)8 (0.15)0
3
= 0.8948
(b)(i) X = Mark obtained by a student 35 − 48 or 66 − 48
66
X ~ N (48, 62 )
X = 0 X 100 −2.167 3 K1
K1
Probability that a student obtained P(−2.167 Z 3)
between 35 and 66 marks, P (35 X 66) or
equivalent
= P 35 − 48 Z 66 − 48
6 6 0.9835 N1
= P (−2.167 Z 3) 177 N1
= 0.9835
Number of students,
= 0.9835180
177 4
(b)(ii) Let k as passing marks, 1.645 P1
P ( X k ) = 0.05 k − 48 = −1.645 K1
6
k − 48 = −1.645
6 k = 38.13 N1 3 10
k = 38.13
k = 38
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 11 3472/2
Sub Total
No. Solution and Mark Scheme Marks Marks
9(a) 5
x2 1.00 4.00 12.25 16.00 25.00 36.00 N1 5 10
xy 3.00 6.50 14.25 18.04 27.00 37.50 N1
Refer graph 9(a) on Page 18. Plot xy against x2 K1
6 *points plotted correctly K1
Line of best fit N1
(At least *5 points plotted)
(b)(i) = h+ px x xy = px2 + h P1
y px p
xy = h + px2
p
xy = px2 + h p = *m K1
p p =1 N1
p = gradient of the line h = *c K1
p N1
= 27.00 − 3.00 h=2
25.00 −1.00
p =1
h = intersect of xy-axis
p
h =2
p
h = 2p
h = 2(1)
h = 2
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 12 3472/2
Sub Total
No. Solution and Mark Scheme Marks Marks
10(a)(i) a = p i + 8 j ; b = −3i + 4 j 2
If a and b are parallel, then Use a = λb or b = λa K1 2
a = λb p = −6 N1
2
( )p i + 8 j = λ −3i + 4 j 1
4λ = 8 p = −3λ
λ=2 p = −6
( )(ii) a + b = p i + 8 j + −3i + 4 j ( p − 3)2 +122 = 13 K1
= ( p − 3) i +12 j p = −2 , p = 8 N1
a + b = ( p − 3)2 +122
13 = p2 − 6 p + 9 +144
p2 − 6 p −16 = 0
( p + 2)( p −8) = 0
p = −2 or p = 8
(b)(i) AP = 6 i + 8 j ; AQ = 4 i + 3 j ;
PR = 1 PQ Use AR = AP + 1 PQ K1
2 2
AR = AP + PR AR = 5 i + 11 j N1
2
= AP + 1 PQ
2
( )= AP + 1 − AP + AQ
2
( )= 1 AP + AQ
2
( )= 1 6 i + 8 j + 4 i + 3 j
2
= 1 (10 i +11 j )
2
AR = 5 i + 11 j
2
(ii) BR = − AR
BR = − 5 i + 11 j BR = − * 5 i + 11 j or − 5i − 11 j N1
2 2 2
BR = −5 i − 11 j
2
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 13 3472/2
Sub Total
No. Solution and Mark Scheme Marks Marks
10(c) BA = BQ + QA Find BA = BQ + QA K1 3 10
−10i −11 j
= − AP − AQ
= −6 i − 8 j − 4 i − 3 j ( )Use 1 BA = 1 −10 i −11 j K1
22 N1
= −10 i −11 j
BR = −5 i − 11 j (Proved)
( )1 BA = 1 −10 i −11 j
2
22
= −5 i − 11 j
2
= BR (Proved)
11(a) A(2, 2) ; B (6, 2) C ( xC , yC ) Use 1 (6 − 2) h = 10 or equivalent K1
Area of isosceles ABC, 2
h=5
1 (6 − 2) h = 10
2
h=5
xC = 2+6 = 4 xC = 2+ 6 = 4 or yC = 2 − 5 = −3 K1
2 2
yC = 2 − 5 = −3
C (4, − 3) C (4, − 3) N1 3
2
(b) B (6, 2) ; C (4, − 3) ; D ( xD , yD ) xD + 4 = 6 or yD + (−3) = 2 2
xD + 4 = 6 yD + (−3) = 2 22 K1
2
2
xD = 8 yD = 7 D(8, 7) N1
D (8, 7)
(c)(i) A(2, 2) ; C (4, − 3) ; D (8, 7) Use mDE = mAC K1
k−7 =−5
mAC = 2 − (−3) = −5 11 − 8 2
2
2−4
mDE = mAC
k−7 =−5 k = − 1 N1
11− 8 2 2
k = −1
2
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 14 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
11(c)(ii) C (4, − 3) ; E 11, − 1 ; P ( x, y) Use ( x1 − x2 )2 + ( y1 − y2 )2 K1
2
PC = 1 ; 4PC = PE ( x − 4)2 + ( y + 3)2
PE 4
4 ( x − 4)2 + ( y + 3)2 = or
( x −11)2 + y + 1 2 ( x − 11)2 + y + 1 2
2 2
( ) ( )16 x2 − 8x +16 + y2 + 6 y + 9 = 4PC = PE (Can be implied) P1
60x2 − 60y2 − 424x + 380y +1115 = 0
( )x2 2 1
− 22x +121 + y + y + 4
15x2 +15y2 −106x + 95y + 1115 = 0 N1
4
3 10
60x2 − 60 y2 − 424x + 380 y +1115 = 0
12(a) 7500x + 4500y 225000 7500x + 4500y 225000 N1
5x + 3y 150
6000x + 7500y 300000 6000x + 7500y 300000 N1
4x + 5y 200
1500x + 3000y 90000 1500x + 3000y 90000 N1
x + 2y 60 or
3
equivalent
3
(b) Refer graph 12(b) Draw correctly at least one straight line from the K1 2
2
on Page 19. *inequalities involve x and y.
Draw correctly all the three *straight lines N1
Region shaded correctly N1
(c)(i) 2000x +1000y = k
Maximum point = (60, 0) H -Ziez = 60 days N1
H -Ziez = 60 days S-Ziez = 0 day N1
S -Ziez = 0 day
(ii) = 2000(60) +1000(0) 2000(60) +1000(0) K1
= 120000
Maximum average profit = RM120000 RM120000 N1 10
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 15 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
13(a) UW = TU 2 + TW 2
= 122 + 52 2
UW = 13 N1 3
UW = 13
UR = 125 // 11.1803 N1 5 10
UR = QU 2 + QR2
= 102 + 52
UR = 125 // 11.1803
(b) Area of plane RUW = 69.2 m2 1 13 125 sin θ = 69.2 K1
1 13 125 sin WUR = 69.2 2
2
WUR = 72.2172 θ = 72.2172 N1
Since WUR is obtuse angle, then WUR =107.7828 N1
WUR = 107.7828
( ) ( )(c) RW 2 = 132 + 125 2 − 2(13) 125 cos107.7828
RW = 19.5647 m 2
sin UWR = sin107.7828
125 −
125 19.5647 ( )RW 2 = 132 + K1
UWR = 32.9667
( )2(13) 125 cos107.7828
URW =180 −32.9667 −107.7828 19.5647 m N1
URW = 39.2505 sin UWR = sin107.7828
125 19.5647
K1
UWR = 32.9667 N1
URW = 39.2505 N1
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT
SULIT 16 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
14(a) v=0 Use v = 0 K1
4t − 8 = 0 4t − 8 = 0 2
t=2 0 t 2 N1 3
0 t 2
3
(b) s = v dt = 2t2 − 8t + c Integrate v dt K1
t = 0, s = 0, c = 0 s = 2t2 − 8t
s = 2t2 − 8t
When t = 2,
2 2
0
s = v dt = 2t 2 − 8t Substitute t = *2 and t = 0 into v dt K1
0 8 m (No) N1
= (8 −16) − 0 = −8 = 8 m
Particle P didn't reach R
(c) 2 5 Substitute t = 4 or t = 5 into K1
s = v dt + v dt v dt
02
( ) ( )=
−8 + 2(5)2 −8(5) − 2(2)2 −8(2)
= 8 + 10 − (−8) 25
s = v dt + v dt K1
= 26 02
Total distance travelled = 26m 26m N1
(d)
shape N1
All correct N1
2 10
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 17 3472/2
No. Solution and Mark Scheme Sub Total
Marks Marks
15(a) I 20 ( A) = 135 x 100 = 135 K1
50
18
x 100 = 135 RM67.50 N1
50
x = RM67.50 2
(b) I 20 ( C ) = 125
18
P20(C) = 18 + P18(C) 18 + y 100 =120 K1
y
z = 18 + y
18 + y 100 = 120 y = RM90.00 N1
y
y = RM90.00 z = RM108.00 N1
z = 90 +18 3
z = RM108.00
(c)(i) I 20 ( A) = 135 ; I 20 ( B) = 160 160 or 110 P1
18 18 135(1) + *160(1) +120(1) + *110(1)
I 20 (C ) = 120 ; I 20 ( D ) = 110 K1
4
18 18 131.25 N1
I 20 = 135(1) +160(1) +120(1) +110(1)
18 4
I 20 = 131.25 3
18
(ii) 1716 100 = 131.25 1716 100 K1
P18
P18
P18 = RM1307.43 131.25 N1 2 10
PERATURAN PEMARKAHAN TAMAT [Lihat halaman sebelah
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 18 3472/2
Graph for Question 9(a)
40
×
(36.00, 37.50)
35
30
×
(25.00, 27.00)
25
20
×
(16.00, 18.04)
15
×
(12.25, 14.25)
10
×
5 (4.00, 6.50)
×
(1.00, 3.00)
0 5 10 15 20 25 30 35 40
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis SULIT
SULIT 19 3472/2
Graph for Question 12(b)
y
(S-Ziez)
80
70
R60
50
40
30
20
10
0 10 20 30 40 50 60 70 x (H-Ziez)
3472/2 © 2020 Program Gempur Kecemerlangan SPM Negeri Perlis [Lihat halaman sebelah
SULIT