The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by PENERBITAN PELANGI SDN BHD, 2023-01-12 04:11:39

Module & More Matematik Tambahan TG4

WM: RM13.50
EM: RM13.90

PELANGI BESTSELLER



ModulE
Modu
lE
Modu lE &
&
&
ModulE &

MoRE
MoRE
MoRE
MoRE










Pembelajaran BERPANDU dan SISTEMATIK


MATEMATIK



TAMBAHAN TINGKATAN




Additional Mathematics DWIBAHASA


Tee Hock Tian
Wong Kiat Hi KSSM



Latihan modular
Studi 1 Minit

Praktis SPM
Eksklusif
Klu Soalan Eksklusif
i-THINK/KBAT Format

Praktis Ekstra SPM Kod QR
Lembaran PBD Kod QR PELANGI SPM
ONLINE TEST
Jawapan Kod QR
https://qr.pelangibooks.com/?u=POTMT4 Terkini







Lembaran
PBD dengan
Jawapan
Bonus Digital

Kandungan






3.2 Persamaan Serentak yang melibatkan Satu Persamaan
Bab Fungsi 1 Linear dan Satu Persamaan Tak Linear.........................50
1 Functions Simultaneous Equations involving One Linear Equation and
One Non-Linear Equation
1.1 Fungsi ..................................................................................1
Functions Praktis SPM 3 ............................................................................57
1.2 Fungsi Gubahan .................................................................7 Praktis Ekstra SPM 3 Kod QR ............................................57
Composite Functions Sudut KBAT ..............................................................................59
Penerbitan Pelangi Sdn. Bhd.
1.3 Fungsi Songsang ..............................................................14 ........................................................................................ 59
Inverse Functions
Praktis SPM 1 ............................................................................19

Praktis Ekstra SPM 1 Kod QR ............................................19 Bab Indeks, Surd dan Logaritma 60
4
Indices, Surds and Logarithms
Sudut KBAT ..............................................................................21
........................................................................................ 21 4.1 Hukum Indeks ..................................................................60
Laws of Indices
4.2 Hukum Surd .....................................................................64
Laws of Surds
Bab Fungsi Kuadratik 22 4.3 Hukum Logaritma ...........................................................71
2 Quadratic Functions Laws of Logarithms
4.4 Aplikasi Indeks, Surd dan Logaritma ............................78
2.1 Persamaan dan Ketaksamaan Kuadratik ......................22 Applications of Indices, Surds and Logarithms
Quadratic Equations and Inequalities
2.2 Jenis-jenis Punca Persamaan Kuadratik .......................28 Praktis SPM 4 ............................................................................80
Types of Roots of Quadratic Equations Praktis Ekstra SPM 4 Kod QR ............................................80
2.3 Fungsi Kuadratik ..............................................................31 Sudut KBAT ..............................................................................82
Quadratic Functions
........................................................................................ 82
Praktis SPM 2 ............................................................................38
Praktis Ekstra SPM 2 Kod QR ............................................38
Sudut KBAT ..............................................................................43 Bab Janjang 83
........................................................................................ 43 5 Progressions

5.1 Janjang Aritmetik .............................................................83
Arithmetic Progressions
Bab Sistem Persamaan 44 5.2 Janjang Geometri .............................................................91
3 Systems of Equations Geometric Progressions
Praktis SPM 5 ..........................................................................101
3.1 Sistem Persamaan Linear dalam Tiga
Pemboleh Ubah ...............................................................44 Praktis Ekstra SPM 5 Kod QR ..........................................101
Systems of Linear Equations in Three Variables Sudut KBAT ............................................................................105
...................................................................................... 105



iii





Kan[M&M MateT Tg4].indd 3 20/12/2022 2:39 PM

Sudut KBAT ............................................................................164
Bab Hukum Linear 106 ...................................................................................... 164
6 Linear Law


6.1 Hubungan Linear dan Tak Linear ...............................106
Linear and Non-Linear Relations Bab Penyelesaian Segi Tiga 165
6.2 Hukum Linear dan Hubungan Tak Linear .................112 9 Solution of Triangles
Linear Law and Non-Linear Relations
6.3 Aplikasi Hukum Linear .................................................118 9.1 Petua Sinus ......................................................................165
Application of Linear Law Sine Rule

Praktis SPM 6 ..........................................................................122 9.2 Petua Kosinus .................................................................169
Cosine Rule
Praktis Ekstra SPM 6 Kod QR ..........................................122 9.3 Luas Segi Tiga .................................................................172
Sudut KBAT ............................................................................125 Area of a Triangle
Penerbitan Pelangi Sdn. Bhd.
...................................................................................... 125 9.4 Aplikasi Petua Sinus, Petua Kosinus dan Luas
Segi Tiga ..........................................................................174
Application of Sine Rule, Cosine Rule and Area of a Triangle
Praktis SPM 9 ..........................................................................175
Bab Geometri Koordinat 126
7 Coordinate Geometry Praktis Ekstra SPM 9 Kod QR ..........................................175
Sudut KBAT ............................................................................178
7.1 Pembahagi Tembereng Garis .......................................126
Divisor of a Line Segment ...................................................................................... 178
7.2 Garis Lurus Selari dan Garis Lurus Serenjang ...........130
Parallel Lines and Perpendicular Lines
7.3 Luas Poligon ...................................................................135
Areas of Polygons Bab Nombor Indeks 179
10
Index Numbers
7.4 Persamaan Lokus ...........................................................137
Equations of Loci
10.1 Nombor Indeks ..............................................................179
Praktis SPM 7 ..........................................................................140 Index Numbers
Praktis Ekstra SPM 7 Kod QR ..........................................140 10.2 Indeks Gubahan .............................................................185
Composite Index
Sudut KBAT ............................................................................143
Praktis SPM 10 .......................................................................190
...................................................................................... 143
Praktis Ekstra SPM 10 Kod QR ........................................190

Sudut KBAT ............................................................................193

Bab Vektor 144 ...................................................................................... 193
8 Vectors
Kertas Pra-SPM ......................................................................195
8.1 Vektor ..............................................................................144
Vectors Lembaran PBD dan Jawapan
8.2 Penambahan dan Penolakan Vektor ...........................148 http://www.epelangi.com/Module&More2021/
Addition and Subtraction of Vectors MatematikTambahan/T4/LPBD.pdf
8.3 Vektor dalam Satah Cartes ...........................................152
Vectors in a Cartesian Plane
Jawapan
Praktis SPM 8 ..........................................................................159 http://www.epelangi.com/Module&More2021/
MatematikTambahan/T4/JawapanKeseluruhan.pdf
Praktis Ekstra SPM 8 Kod QR ..........................................159



iv





Kan[M&M MateT Tg4].indd 4 20/12/2022 2:39 PM

Bab Fungsi Matematik Tambahan Tingkatan 4 Bab 1 Fungsi
1 Functions







1.1 Fungsi Analisis Soalan SPM 2021
Kertas 1
Kertas 2
Functions
S9

STUDI 1 Minit Buku Teks: 2 – 11

Tiga Cara Perwakilan Hubungan / Three Ways to Represent Relations
Suatu hubungan memadankan unsur-unsur satu set dengan unsur-unsur set lain.
Penerbitan Pelangi Sdn. Bhd.
A relation matches the elements of one set with the elements of another set.
1 Gambar rajah anak panah 2 Graf / Graph 3 Pasangan bertertib
Arrow diagram Ordered pairs
Set A
separuh daripada {(1, 2), (2, 4), (3, 6), (4, 8)}
is half of 8
Set A Set B
6
1 2 4
2 4 2
3 6 0
4 8 1 2 3 4 Set B




Empat Jenis Hubungan / Four Types of Relations

1 Satu dengan satu 2 Banyak dengan satu 3 Satu dengan banyak 4 Banyak dengan banyak
One-to-one Many-to-one One-to-many Many-to-many
A B C D P Q M N


















x f y Tatatanda fungsi/Function notation:
f(x) = x atau / or f : x → x 2
2
3 9 Domain / Domain = {3, 4, 7}
16 Kodomain / Codomain = (9, 16, 49, 64}
4 Objek / Objects = 3, 4, 7
49
Imej / Images = 9, 16, 49
7 64 Julat / Range = {9, 16, 49}





1





01-[M&M Mate(T) Tg4] 2021.indd 1 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

1. Tentukan sama ada setiap hubungan yang berikut ialah satu fungsi atau bukan. Beri sebab untuk jawapan
anda. TP 1
Determine whether each of the following relations is a function. Give the reason for your answer.
1
CONTOH (a)
BAB a p
q p 4
b q 8
r
c 12
s r

Suatu fungsi. Setiap objek hanya mempunyai satu Suatu fungsi. Setiap objek mempunyai hanya
imej. satu imej.
A function. Each object has only one image. A function. Each object has only one image.








(b) (c)
3 m 2 3
5 n 4 5
7 p 6 7
11 8

Penerbitan Pelangi Sdn. Bhd.
Bukan fungsi. 11 tidak mempunyai imej. Bukan fungsi. Objek 8 tidak mempunyai imej.
Not a function. 11 does not have any image. Not a function. The object 8 does not have any image.










(d) (e)
y y
Tip Penting
Gunakan ujian garis
mencancang.
Use the vertical line test. x
0
x
0 2
Bukan fungsi. Garis mencancang menyilang graf
Satu fungsi. Garis mencancang memotong graf di dua titik berlainan.
itu pada satu titik sahaja. Not a function. The vertical line cuts the graph at two
A function. The vertical line cuts the graph at only one different points.
point.








2





01-[M&M Mate(T) Tg4] 2021.indd 2 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

(h) {(6 , p), (6, q) , (9, q) , (13, r)} (i) {(a , 2) , (b , 2) , (c, 4) , (d, 8), (f, 2)}

Bukan fungsi. Objek 6 mempunyai lebih daripada Fungsi. Setiap objek mempunyai hanya satu
satu imej, iaitu p dan q. imej. 1
Not a function. The object 6 has more than one image, A function. Every object has only one image.
BAB
that is, p and q.









Penerbitan Pelangi Sdn. Bhd.



2. Tulis setiap fungsi yang berikut menggunakan tatatanda fungsi. TP 2
Write each of the following by using the function notation.

(a)
CONTOH
g
f Tip Penting 2 4
Fungsi sering diwakili oleh
1 5 huruf kecil seperti f, g, h 3 6
dan k.
2 6 Functions are often 4 8
represented by small letters
such as f, g, h and k.
3 7 10

g : x → x + 4 g : x → 2x
g(x) = x + 4 g(x) = 2x






1 1 1 (c)
(b) {(3, ), (5, ), (6, )}.
9 25 36 h(x)
(4, 7)
(2, 5)
1 3
f : x → , x ≠ 0
x 2
1
f(x) = , x ≠ 0 x
x 2 0
h : x → x + 3
h(x) = 2x











3





01-[M&M Mate(T) Tg4] 2021.indd 3 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

3. Lengkapkan jadual yang berikut. TP 1
Complete the following table.

1 Fungsi Domain Kodomain Objek Imej Julat
Function Domain Codomain Object Image Range
BAB CONTOH {0 < x < 6} {−3 < f(x) < 10} 0 < x < 6 –3 < f(x) < 13 {0 < f(x) < 13}
f(x)
13





1 x
0 2 6
–3

(a) {−2 < x < 4} {0 <f(x) < 10} −2 < x < 4 0 < f(x) < 10 {0 < f(x) < 10}
f(x)
10


6


2
x
–2 0 3 4 Penerbitan Pelangi Sdn. Bhd.
(b) {−1, 0, 1, 2, 3} {−2, 0, 2, 4, 6} −1, 0, 1, 2, 3 −2, 0, 2, 4, 6 {−2, 0, 2, 4, 6}
f(x)
6
5
4
3
2
1
x
–1 0 1 2 3
–1
–2
(c) {4, 10, 18} {2, 5, 9, 11} 4, 10, 18 2, 5, 9 {2, 5, 9}

4 2

10 5
18 9

11


(d) {(3, 10), (5, 26), {3, 5, 6, 9} {10, 26, 37, 3, 5, 6, 9 10, 26, 37, 82 {10, 26, 37,
(6, 37),(9, 82)} 82} 82}







4





01-[M&M Mate(T) Tg4] 2021.indd 4 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

4. Lakar graf bagi setiap fungsi berikut. Seterusnya, nyatakan julat sepadan bagi domain yang diberikan. TP 4
Sketch the graph of the following functions. Hence, state the corresponding range for the given domain.

2
CONTOH (a) y = |x − 1|, −3 < x < 3 1
f(x) = |1 − 2x|, −1 < x < 3
f(x)
1 BAB
x –1 0 1 2 3 (–3, 8) (3, 8)
2 8
7
f(x) 3 1 0 1 3 5
6
5
f(x)
4
5 3
Penerbitan Pelangi Sdn. Bhd.
2
4
1
3 x
–3 –2 –1 0 1 2 3
2

1 Julat/ Range: 0 < f(x) < 8

x
–1 0 1 2 3


Julat/ Range: 0 < f(x) < 5


5. Selesaikan setiap yang berikut. TP 5
Solve each of the following.
CONTOH

3
Fungsi f ditakrifkan sebagai f : x → 4x + , x ≠ 0. Cari
x
Function f is defined as f : x → 4x + 3 , x ≠ 0. Find
(i) f(−2) x
1
(ii) imej bagi di bawah f.
4
the image of 1 under f.
4
(iii) nilai-nilai f apabila imej ialah 13.
the values of f when the image is 13.
Penyelesaian:
3
(i) f(x) = 4x + (iii) f(x) = 13
x 3
3 1 4x + = 13
f(–2) = –8 – = –9 x
2 2 4x + 3 = 13x
2
2
3 4x – 13x + 3 = 0
(ii) f(x) = 4x +
x (4x – 1)(x – 3) = 0
1
1
1
f 1 2 = 4 1 2 + 3 x = , x = 3
1
4
4
4
4
= 1 + 12 = 13
5


01-[M&M Mate(T) Tg4] 2021.indd 5 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi


CONTOH
Fungsi g ditakrifkan sebagai g : x → |2 – 8x|, cari
1 Function g is defined as g : x → |2 – 8x|, find
1
BAB (i) g 1 2
2
(ii) nilai-nilai x yang memetakan hubungan dirinya.
the values of x which maps to itself.
Penyelesaian:
(i) g(x) = |2 – 8x| (ii) g(x) = x
1
g 1 2 = |2 − 4| |2 – 8x| = x
2 = |−2| 2 – 8x = x 2 – 8x = –x
x – 2 = 16 Penerbitan Pelangi Sdn. Bhd.
= 2
2 = x + 8x 2 = 8x – x
9x = 2 7x = 2
2 2
x = x =
9 7


12
(a) Fungsi f ditakrifkan sebagai f : x → , x ≠ 2. (b) Diberi g(x) = u3x – 7u, cari
Cari x – 2 Given g(x) = u3x – 7u,
The function f is defined as f : x → 12 , x ≠ 2. Find (i) nilai bagi g(−2) dan g(5).
– 2
(i) nilai bagi f(−4) dan f(10). the value of g(−2) and g(5).
the value of f(−4) and f(10). (ii) objek dengan keadaan imej ialah 14.
3 the objects for which the image is 14.
(ii) nilai-nilai x dengan keadaan f(x) = .
the values of x for which f(x)= . 4
(i) g(x) = u3x – 7u
(i) f(x) = 12 g(–2) = u–6 – 7u = 13
x – 2 g(5) = u15 – 7u = 8
f(–4) = 12 = –2
–6
f(10) = = 3 (ii) g(x) = 14
2 u3x – 7u = 14
3x – 7 = 14 3x – 7 = –14
3x = 21 3x = –7
(ii) f(x) = 3 7
4 x = 7 x = –
12 = 3 3
x – 2 4
3(x – 2) = 48
x = 18




















6





01-[M&M Mate(T) Tg4] 2021.indd 6 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

(c) Diberi h(x) = 2x + mx − 30 dengan keadaan m (d) Fungsi f ditakrifkan sebagai f(x) = 7 + |3x|. Cari
2
ialah satu pemalar dan h(2) = −34. Cari The function f is defined as f(x) = 7 + |3x|. Find
Given that h(x) = 2x + mx − 30 for which m is a constant (i) nilai bagi f(−1) dan f(6).
2
and h(2) = −34. Find the values of f(−1) and f(6). 1
(i) nilai m. (ii) objek-objek dengan keadaan imejnya ialah
the value of m. 19.
(ii) nilai-nilai x yang memetakan kepada dirinya. the objects for which the image is 19. BAB
the values of x which map to itself.
2
(i) h(x) = 2x + mx − 30 (i) f(x) = 7 + |3x|
h(2) = 8 + 2m − 30 = −34 f(−1) = 7 + |−3| = 10
2m = −34 + 22 f(6) = 7 + |18| = 25
m = −6
(ii) f(x) = 19
Penerbitan Pelangi Sdn. Bhd.
(ii) h(x) = x 7 + |3x| = 19
2
2x − 6x − 30 = x |3x| = 12
2
2x − 7x − 30 = 0 3x = 12 3x = –12
(x + 5)(x − 6) = 0 x = 4 x = –4
5
x = − , x = 6
2


1.2 Fungsi Gubahan
Composite Functions
STUDI 1 Minit Buku Teks: 12 – 19






Fungsi Gubahan Composite Functions A x f gf B y g C z • Fungsi f memetakan x kepada y dan fungsi g memetakan y
kepada z.
Function f maps x onto y, and function g maps y onto z.

• Fungsi gubahan gf memetakan x terus kepada z.

Composite function gf maps x directly onto z.
gf(x) = g[f(x)]

6. Huraikan fungsi gubahan untuk setiap kes yang berikut. TP 2
Describe the composite function for each of the following case.

CONTOH (a)
p q r s
f g h

a b c d e
p q r s

h k
u v

h = qp k = rs
u = gf k = hg






7





01-[M&M Mate(T) Tg4] 2021.indd 7 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

(b) (c)
f g g f f g

1
w x y z p q r s
BAB

h k u v


h = gf k = gg / g u = ff / f 2 v = fg
2


7. Bagi setiap pasangan fungsi yang berikut, cari (i) fg(x) dan (ii) gf(x). TP 3
For each of the following pairs of functions, find (i) fg(x) and (ii) gf(x).

CONTOH (a) f(x) = 5 – 3x
g(x) = 2x + 1
f(x) = x 2
g(x) = 3x + 1
(i) fg(x) = f(2x + 1)
Penyelesaian: = 5 – 3(2x + 1)
(i) fg(x) = f(3x + 1) = 2 – 6x
2
= (3x + 1)
= 9x + 6x + 1 (ii) gf(x) = g(5 – 3x)
2
= 5 – 2x
= 2(5 – 3x) + 1

= 11 – 6x
(ii) gf(x) = g(x ) Penerbitan Pelangi Sdn. Bhd.

2
2
= 3x + 1




(b) f(x) = x + 3 (c) f(x) = 1 – x
2
g(x) = 5x – 2 4
g(x) =
x
(i) fg(x) = f(5x – 2)
2
4
2
= 5x – 2 + 3 (i) fg(x) = f 1 2
= 5x + 1 x
2
4
= 1 – , x ≠ 0
(ii) gf(x) = g(x + 3) x
= 5(x + 3) – 2 (ii) gf(x) = g(1 – x)
2
2
= 5(x + 6x + 9) – 2 4
2
= 5x + 30x + 43 = 1 – x , x ≠ 1








8





01-[M&M Mate(T) Tg4] 2021.indd 8 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

8. Bagi setiap pasangan fungsi yang berikut, cari TP 3
For each pair of the following functions, find
(i) fg(3) (ii) gf(4)
1
CONTOH (a) f : x → 3x + 2, g : x → 2 – x
2
f : x → 5x, g : x → 4 – 2x BAB
(i) g(3) = 2 – (3) = –7
2
Penyelesaian: fg(3) = f(–7)
(i) g(3) = 4 – 2(3) = –2 = 3(–7) + 2
fg(3) = f(–2) = –19
= 5(–2)
(ii) f(4) = 3(4) + 2 = 14
= –10
gf(4) = g(14)
3 Penerbitan Pelangi Sdn. Bhd.
2
1 Gantikan 4 ke dalam f, anda = 2 – (14)
akan dapat nilai 20. = –194
(ii) f(4) = 5(4) = 20 Insert 4 into f, you will get 20.
gf(4) = g(20) 2 Gantikan 20 ke dalam g.
= 4 – 2(20) Insert 20 into g.
= –36












3 x
(b) f : x → x – 3, g : x → , x ≠ 0 (c) f : x → 2 – 8x, g : x → , x ≠ –5
x x + 5
3 3
(i) g(3) = =
(i) g(3) = = 1 3 + 5 8
3
fg(3) = f(1) fg(3) = f 1 2
8
= 1 – 3 3
= –2 = 2 – 8 1 2
8
= –1
(ii) f(4) = 4 – 3 = 1
gf(4) = g(1)
(ii) f(4) = 2 – 8(4) = –30
= gf(4) = g(–30)
1
= 3 = –30
–30 +5
6
=
5














9





01-[M&M Mate(T) Tg4] 2021.indd 9 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

9. Bagi setiap pasangan fungsi yang berikut, cari TP 3
For each pair of the following functions, find
(i) f (x) (ii) g (x) (iii) (2) (iv) (3)
2
f
2
g
2
2
1
CONTOH (a) f(x) = 3x – 1, g(x) = 4x + 2
BAB f(x) = 2x, g(x) = x – 5
2
(i) f (x) = f(3x – 1)
Penyelesaian: = 3(3x – 1) – 1
(i) f (x) = f(2x) = 9x – 4
2
= 2(2x)
2
= 4x (ii) g (x) = g(4x + 2)
= 4(4x + 2) + 2
2Penerbitan Pelangi Sdn. Bhd.
(ii) g (x) = g(x – 5) = 16x + 10
2
= (x – 5) – 5
2
= x – 10 (iii) f (2) = 9(2) – 4
= 18 – 4
2
(iii) f (2) = 4(2) = 14
= 8
(iv) g (3) = 16(3) + 10
2
2
(iv) g (3) = 3 – 10 = 48 + 10
= –7 = 58
(b) f(x) = x – 6, g(x) = x + 1 (c) f : x → 2 + 5x, g : x → x , x ≠ 1
2
x – 1
2
(i) f (x) = f(x – 6) (i) f (x) = f(2 + 5x)
2
= (x – 6) – 6 = 2 + 5(2 + 5x)
= x – 12 = 12 + 25x
x
(ii) g (x) = g(x + 1) x – 1
2
2
2
= (x + 1) + 1 (ii) g (x) = x
2
2
= x + 2x + 1 ( x – 1 ) – 1
2
2
x
(iii) f (2) = 2 – 12 x – 1
2
= –10 =
x – (x – 1)
x – 1
(iv) g (3) = 3 + 2(3) + 3 = x
2
2
= 81 + 18 + 1
= 100
(iii) f (2) = 12 + 25(2)
2
= 62
(iv) g (3) = 3
2






10





01-[M&M Mate(T) Tg4] 2021.indd 10 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

10. Selesaikan setiap yang berikut. TP 4
Solve each of the following.

CONTOH (a) Diberi f : x → x + 3, g : x → 9 – 2x dan fg(x) = 6. 1
Given f : x → x + 3, g : x → 9 – 2x and fg(x) = 6.
Diberi f : x → 2x + 4, g : x → x – 2 dan fg(x) = 2.
Given f : x → 2x + 4, g : x → x – 2 and fg(x) = 2. BAB
fg(x) = f(9 – 2x)
Penyelesaian: = 9 – 2x + 3
fg(x) = f(x – 2) 1 Cari fungsi gubahan fg(x). = 12 – 2x

Find the composite function fg(x).
= 2(x – 2) + 4 fg(x) = 12 – 2x = 6
= 2x 2x = 6
fg(x) = 2x = 2 2 Samakan fg(x) dengan 2. x = 3
Equate fg(x) with 2.

x = 1
Penerbitan Pelangi Sdn. Bhd.
3
(b) Diberi f : x → x – 3, g : x → 3 – 5x dan gf(x) = –2. (c) Diberi f : x → , g : x → 2x + 1 dan gf(x) = –1.
Given f : x → x – 3, g : x → 3 – 5x and gf(x) = –2. x
Given f : x → 3 , g : x → 2x + 1 and gf(x) = –1.
x
gf(x) = g(x – 3)
3
= 3 – 5(x – 3) gf(x) = g 1 2
= 18 – 5x x
3
gf(x) = 18 – 5x = –2 = 2 1 2 + 1
x
5x = 20 6 + x
x = 4 = x , x ≠ 0
6 + x
gf(x) = = –1
x
6 + x = –x
2x = –6
x = –3


11. Cari fungsi g. TP 4
Find the function g.

CONTOH (a) f(x) → x + 2, fg(x) = 7 – 3x

f(x) = x + 1, fg(x) = x + 7 f(x) = x + 2
Penyelesaian: fg(x) = g(x) + 2
f(x) = x + 1 7 – 3x = g(x) + 2
1 Gantikan g(x) ke dalam f(x). g(x) = 7 – 3x – 2
fg(x) = g(x) + 1 Insert g(x) into f(x). = 5 – 3x
x + 7 = g(x) + 1 2 Samakan kedua-dua fg(x). g : x → 5 – 3x
Equate both fg(x).
g(x) = x + 7 – 1
= x + 6 3 Selesaikan untuk g(x).
Solve for g(x).
g : x → x + 6










11





01-[M&M Mate(T) Tg4] 2021.indd 11 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

(b) f(x) → 2x – 1, fg(x) = 9 – 4x 16 – x
(c) f(x) = 4 – x, fg(x) =
8
f(x) = 2x – 1 f(x) = 4 – x
1
fg(x) = 2g(x) – 1 fg(x) = 4 – g(x)
9 – 4x = 2g(x) – 1 16 – x
BAB 2g(x) = 9 – 4x + 1 8 = 4 – g(x)
2g(x) = 10 – 4x g(x) = 4 – 1 16 – x 2
10 – 4x 8
g(x) = 32 – (16 – x)
2 =
= 5 – 2x 8
g : x → 5 – 2x = 16 + x
8
g : x → 16 + x
y = Penerbitan Pelangi Sdn. Bhd.
8



CONTOH (d) f(x) = 5 – x, gf(x) = 18 – x
f(x) = x + 2, gf(x) = 7 – 3x gf(x) = 18 – x
g(5 – x) = 18 – x
Penyelesaian: Katakan y = 5 – x
gf(x) = 7 – 3x 1 Gantikan f(x) = x + 2 ke x = 5 – y
g(x + 2) = 7 – 3x dalam gf(x). g(y) = 18 – (5 – y)
Katakan/ Let y = x + 2 Insert f(x) = x + 2 into gf(x). = 13 + y
x = y – 2 2 Gantikan y = x + 2 dan g(x) = 13 + x
g(y) = 7 – 3(y – 2) x = y – 2 ke dalam g(x + 2). g : x → 13 + x
Insert y = x + 2 and
= 7 – 3y + 6 x = y – 2 into g(x + 2).
= 13 – 3y
g(x) = 13 – 3x 3 Selesaikan untuk g(y) ≈ g(x).
Solve for g(y) ≈ g(x).

g : x → 13 – 3x


6 (f) f(x) = x + 2, gf(x) = 8 – 3x 2
(e) f : x → , x ≠ 0, gf : x → 2x + 3
x
gf(x) = 8 – 3x 2
gf(x) = 2x + 3 g(x + 2) = 8 – 3x 2
6
g 1 2 = 2x + 3 Katakan y = x + 2
x
x = y – 2
6 g(y) = 8 – 3(y – 2)
2
Katakan
x = 8 – 3(y – 4y + 4)
2
6 2
x = = 8 – 3y + 12y – 12
= –3y + 12y – 4
2
6
2
g(y) = 2 1 2 + 3 g(x) = –3x + 12x – 4
y
g : x → –3x + 12x – 4
2
12
= + 3
y
12
g(x) = + 3
x
12
g : x → + 3, x ≠ 0
x
12



01-[M&M Mate(T) Tg4] 2021.indd 12 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

12. Selesaikan setiap yang berikut. TP 5
Solve each of the following.

CONTOH 1
Diberi fungsi f : x → 9 – 2x, g : x → ax + b dan fg : x → 1 – 6x. Cari nilai bagi a dan b.
Given the function f : x → 9 – 2x, g : x → ax + b and fg : x → 1 – 6x. Find the value of a and of b. BAB
Penyelesaian:
fg(x) = f(ax + b) 1 Cari fungsi gubahan fg(x).
= 9 – 2(ax + b) Find composite function fg(x).
= 9 – 2b – 2ax
9 – 2b – 2ax = 1 – 6x 2 Samakan kedua-dua fg(x).
Equate both fg(x).
3 Bandingkan pemalar.
Compare the constant.

Bandingkan pemalar: 9 – 2b = 1, –2a = –6
Compare the constants: 2b = 8 a = 3
b = 4


(a) Diberi fungsi f : x → 4x + k, g : x → x – 3 dan fg : x → mx – 8. Cari nilai bagi k dan m.
Given the function f : x → 4x + k, g : x → x – 3 and fg : x → mx – 8. Find the value of k and of m.

fg(x) = f(x – 3)
= 4(x – 3) + k

= 4x – 12 + k
gf(x) = g(5x – 1) Penerbitan Pelangi Sdn. Bhd.
4x – 12 + k = mx – 8
Bandingkan pemalar:
Compare the constants:
4x = mx, –12 + k = –8
m = 4 k = 4





(b) Diberi fungsi f : x → 5x – 1, g : x → 2x dan gf : x → ax + b. Cari nilai bagi a dan b.
Given the function f : x → 5x – 1, g : x → 2x and gf : x → ax + b. Find the value of a and of b.


= 2(5x – 1)
= 10x – 2
10x – 2 = ax + b

Bandingkan pemalar:
Compare the constants:
10x = ax, b = –2
a = 10










13





01-[M&M Mate(T) Tg4] 2021.indd 13 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi


1.3 Fungsi Songsang
Inverse Functions
1
STUDI 1 Minit Buku Teks: 20 – 30
BAB

Suatu fungsi f yang berhubungan Langkah-langkah menentukan f : CONTOH/EXAMPLE:
–1
–1
satu dengan satu mempunyai Steps to determine f : f(x) = 2x + 6
–1
fungsi songsangan f . 1 Ungkapkan fungsi f(x) = y
A function f with a one-to-one relation sebagai x dalam sebutan y. Katakan/Let f(x) = y
has an inverse function f . 2x + 6 = y
–1
Rewrite the function f(x) = y as y – 6
x in terms of y. x =
f 2
–1
2 Tulis x sebagai f (y). Oleh kerana / Since f (y) = x,
–1
–1
Write x as f (y). –1 y
x y f (y) =
3 Gantikan pemboleh ubah y
–1
f –1 dengan x. Jadi / So, f (x) = x – 6
Replace variable y with x. 2


13. Cari nilai bagi setiap yang berikut. TP 3
Find the values for each of the following.
(a) Dalam gambar rajah anak panah yang berikut,
CONTOH Penerbitan Pelangi Sdn. Bhd.
fungsi f memetakan x kepada y. Cari
Dalam gambar rajah anak panah yang berikut, In the following arrow diagram, the function f maps x
fungsi f memetakan x kepada y. Cari to y. Find
In the following arrow diagram, the function f maps x to y. f
Find x y
f 4
x y 2
4
5 1 3

4
2 –2
–6
–1
–1
–8
(i) f(1)
(i) f(2) (ii) f (−1)
−1
−1
(ii) f (−8) (iii) f (2)
−1
(iii) f (−2) −1 3
−1
(iv) f(4) (iv) f 1 2
4
Penyelesaian: (i) f(1) = −1
(i) f(2) = 4 (ii) f(1) = −1, f (−1) = 1
−1
−1
(ii) f(−1) = −8, f (−8) = −1
−1
(iii) f(4) = 2, f (2) = 4
(iii) f(5) = −2, f (−2) = 5 3
−1
1 2
(iv) f(−6) = , f −1 3 = −6
(iv) f(2) = 4, f (4) = 2 4 4
−1
14



01-[M&M Mate(T) Tg4] 2021.indd 14 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

3x
CONTOH (b) Diberi g(x) = x – 2 , x ≠ 2. Cari
8
Fungsi f ditakrifkan oleh f(x) = , x ≠ 1. Cari 3x
x – 1 Given that g(x) = x – 2 , x ≠ 2. Find 1
8
Function f is defined by f(x) = , x ≠ 1. Find
x – 1 (i) f(4) (ii) f (3)
(iii) f (9) (iv) f (10) BAB
−1
−1
(i) f(3) (ii) f(5) (iii) f (2) (iv) f (4)
–1
–1
Penyelesaian: 3(4)
(i) f(4) = (ii) f(3) =
8 8 4 – 2
(i) f(3) = (ii) f(5) =
3 – 1 5 – 1 = 6 = 9
= 4 = 2
f
–1
–1
(iii) f (9) = k (iv) (10) = k
f(k) = 9 f(k) = 10
(iii) f (2) = k (iv) f (4) = x 3k 3k
–1
–1
f(k) = 2 f(x) = 4 k – 2 = 9 k – 2 = 10
8 = 2 8 = 4 3k = 9k – 18 3k = 10k – 20
k – 1 x – 1 6k = 18 7k = 20
k = 5 x = 3 k = 3 20
k =
7

14. Tentukan sama ada setiap fungsi f berikut mempunyai fungsi songsang atau tidak. Beri satu sebab untuk
jawapan anda. TP Penerbitan Pelangi Sdn. Bhd.
3
Determine whether each of the following function f has an inverse function or not. Give a reason for your answer.
CONTOH (a)
f
f(x) x y


p –3
q 5

r 7
x
0

f bukan fungsi satu dengan satu kerana garis f ialah fungsi satu dengan satu. f mempunyai
mengufuk memotong graf itu pada dua titik. f tidak fungsi songsang.
ada fungsi songsang. f is a one-to-one function. f has an inverse function.
f is not a one-to-one function because the horizontal line
cuts the graph at two points. f has no inverse function.














15





01-[M&M Mate(T) Tg4] 2021.indd 15 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

(b) (c)
f(x) f(x)
1

BAB


x
x 0
0


f ialah fungsi satu dengan satu. f mempunyai f bukan fungsi satu dengan satu kerana garis
Penerbitan Pelangi Sdn. Bhd.
fungsi songsang. mengufuk memotong graf itu pada dua titik. f
f is a one-to-one function. f has an inverse function. tidak ada fungsi songsang.
f is not a one-to-one function because the horizontal line
cuts the graph at two points.. f has no inverse function.





15. Rajah berikut menunjukkan graf bagi fungsi satu dengan satu, f. Dalam setiap kes, lakar graf bagi f . TP 4
−1
The following diagrams show the graph of one-to-one function, f. In each case, sketch the graph of f .
−1
CONTOH (a)
f(x)
f(x) y = x
5
(3, 5) y = x f


(5, 3) Tip Penting
(1, 0) → (0, 1) –3 5 x
f (5, 3) → (3, 5) 0
(0, 1)
f –1
x
0 (1, 0) –3



(b) (c)
f(x) f(x)
y = x
y = x 8

f –1
4 f –1
f
3
x f
0 4
x
0 3 8









16





01-[M&M Mate(T) Tg4] 2021.indd 16 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

16. Cari fungsi songsang bagi setiap fungsi yang berikut. TP 3
Find the inverse function for each of the following functions.

CONTOH (a) f : x → 3 – 4x 1
–1
f : x → x – 8 Katakan f (x) = y
1 Katakan f (x) = y Let f(y) = x BAB
–1
Penyelesaian: Let f –1 (x) = y 3 – 4y = x
Katakan/ Let f (x) = y 3 – x
–1
f(y) = x 2 Jadikan y sebagai perkara y = 4
rumus.
y – 8 = x Make y into subject of the 3 – x
–1
y = x + 8 equation. f (x) = 4
\ f (x) = x + 8 3 Gantikan y ke dalam
–1
–1
f : x → x + 8 f (x) = y –1
–1
Insert y into f (x) = y
Penerbitan Pelangi Sdn. Bhd.
(b) g : x → 5x 2
(c) h : x → – , x ≠ 1
x – 1
Katakan g (x) = y Katakan h (x) = y
–1
–1
Let g(y) = x Let h(y) = x
5y = x 2
x = x
y = y – 1
5 2
x y – 1 =
x
–1
g (x) =
5 2
y = + 1
x
2
h (x) = + 1, x ≠ 0
–1
x
17. Tentukan fungsi gubahan berikut yang melibatkan fungsi sonsang. TP 4
Determine the following composite function involving inverse function.
CONTOH
2
Diberi dua fungsi f(x) → x – 3 dan g(x) = , x ≠ –1. Cari
x + 1
Given two functions f(x) → x – 3 and g(x) = 2 , x ≠ 1. Find
x + 1
(i) f g (ii) gf –1
–1
Penyelesaian:
–1
Katakan/ Let f (x) = y (i) f g(x) = f –1 1 2 2 (ii) gf = g(x + 3)
–1
–1
f(y) = x x + 1 = 2
y – 3 = x = 2 + 3 x + 3 + 1
y = x + 3 x + 1 = 2 , x ≠ –4
\ f (x) = x + 3 2 + 3(x + 1) x + 4
–1
=
x + 1
5 + 3x
= , x ≠ –1
x + 1







17





01-[M&M Mate(T) Tg4] 2021.indd 17 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

1 1
(a) Diberi dua fungsi f(x) = 6 – 3x dan g(x) = , x ≠ . Cari
2 – 1 2
Given two function f(x) = 6 – 3x and g(x) = 1 , x ≠ 1 . Find
1 2x – 1 2
(i) f g (ii) gf –1
–1
BAB Katakan f (x) = y (i) f g(x) = f 1 1 2 (ii) gf (x) = g 1 6 – x 2
–1
–1
–1
–1
f(y) = x 2 – 1 3
6 – 3y = x 1 = 1
6 – x 6 – 1 2x – 1 2 2 1 6 – x 2 – 1
y = = 3
3 3 1
f (x) = 6 – x = 6(2x – 1) – 1 = 12 – 2x – 3
–1
3 3(2x – 1) 1 2
Penerbitan Pelangi Sdn. Bhd.
12 – 7 3
= , x ≠ 3 9
6 – 3 = , x ≠
9 – 2x 2
(b) Diberi fungsi f : x → 7 – 4x. Cari
Given the function f : x → 7 – 4x. Find
–1
(i) f f –1 (ii) f f
Katakan f (x) = y (i) ff (x) = f 1 7 – x 2 (ii) f f(x) = f (7 – 4x)
–1
–1
–1
–1
f(y) = x 4 7 – (7 – 4x)
7 – 4y = x = 7 – 4 1 7 – x 2 = 4
(7 – x) 4 7 – 7 + 4x
y = =
4 = 7 – 7 + x 4
f (x) = 7 – x = x = 4x
–1
4 4
= x





3
(c) Diberi f(x) = , x ≠ 0 dan g(x) = 4 + x. Cari
2x
It is given that f(x) = 3 , x ≠ 0 and g(x) = 4 + x. Find
2x
(i) f g(x) (ii) f g(g )
–1
3 (ii) Katakan / Let y = 4 + x
(i) f g(x) =
2g(x) x = y – 4
–1
3 g (y) = y – 4
= –1
2(4 + x) g (x) = x – 4
(7 – x) fg(g ) = 3
–1
= , x ≠ –4 8 + 2g (x)
–1
4
3
=
8 + 2(x – 4)
3
= , x ≠ 0
2x



18





01-[M&M Mate(T) Tg4] 2021.indd 18 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

Praktis SPM 1 Praktis Ekstra
SPM
SPM 1
1

Kertas 1 3x – 9 = 4
y BAB
1. (a) Dalam rajah di bawah, fungsi f memetakan x = 4 + 3
Buku set X kepada set Y dan fungsi g memetakan 3y
Teks 4
–1
ms.12-30 set Y kepada set Z. Maka / Then, k (x) = + 3, x ≠ 0.
In the diagram below, function f maps set X to set Y 3y
and function g maps set Y to set Z.
(b)
f g
X Y Z y
Penerbitan Pelangi Sdn. Bhd.
y = h(x)
x 3x – 7 g(y)
(0, 3)
x
0 (1, 0)
4
Diberi g(y) = , y ≠ 2, cari fungsi yang
y – 2
memetakan set Z kepada set X dalam sebutan
x.
x
x
Given that g(y) = 4 , y ≠ 2, find the function 2. Diberi fungsi g(x) = − 3 dan fg(x)= − 7, cari
y – 2 4 2
which maps set Z to set X in terms of x. Buku x x
Teks Given function g(x) = − 3 and fg(x) = − 7, find
(b) Rajah menunjukkan suatu graf fungsi ms.20-30 4 2
–1
y = h(x). (a) g (x),
The diagram shows the graph of the function (b) f(x),
y = h(x). (c) fg (4).
–1
y
y = h(x) (a) Katakan / Let g(x) = y
x
− 3 = y
4
x = 4y + 12
–1
(0, 3) g (x) = 4x + 12
x
0 g –1
(b) fg(g ) = – 7
–1
Pada rajah yang sama, lakarkan graf h (x). 2
–1
–1
On the same diagram, sketch the graph of h (x). f(x) = 4x + 12 – 7
4
(a) Katakan / Let gf(x) = k(x) f(x) = 2x – 1
4
Maka / Then, k(x) =
f(x) – 2 (c) g (4) = 4(4) + 12
–1
–1
4 g (4) = 28
k(x) =
3x – 7 – 2 fg (4) = f(28)
–1
4
k(x) = , x ≠ 3 = 2(28) – 1
3x – 9
= 55
Katakan / Let k(x) = y
y = 4
3x – 9
19





01-[M&M Mate(T) Tg4] 2021.indd 19 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

3. Diberi fungsi p(x) = mx + 3, q(x) = 2x − 7 dan pq(x) (a) (i) Cari / Find f(4),
Buku = 2mx + n, ungkapkan m dalam sebutan n. (ii) Seterusnya, cari nilai p jika g(p + 3)
Teks
ms.12-19 Given the functions p(x) = mx + 3, q(x) = 2x − 7 and = f(4).
1 pq(x) = 2mx + n, express m in terms of n. 1
Hence, find the value of p if g(p + 3) = f(4).
8
BAB pq(x) = m[q(x)] + 3 (b) (i) Tentukan gf(x)
Determine gf(x).
= m(2x – 7) + 3
= 2mx – 7m + 3 (ii) Seterusnya lakarkan graf y = ugf(x)u untuk
–1 < x < 2. Nyatakan julat bagi y.
Membandingkan dengan pq(x) = 2mx + n, Hence, sketch the graph of y = ugf(x)u for
Comparing with pq(x) = 2mx + n, –1 < x < 2. State the range of y.
n = –7m + 3
3 – n
m = (a) (i) f(4) = 4 – 5(4) = –16
7
1
(ii) g(p + 3) = f(4)
8
1
3(p + 3) – 5 = (–16)
4. Diberi fungsi f(x) = 3x − 7, cari 8
Buku Given the function f(x) = 3x − 7, find 3p + 9 – 5 = –2
Teks –1 3p = –6
ms.12-30 (a) f (x), p = –2
4s
(b) nilai k jika f 2 1 2 = 20.
3
4s (iii) gf(x) = g(4 – 5x)
the value of k if f 1 2 = 20.
2
3 = 3(4 – 5x) – 5
= 12 – 15x – 5
(a) Katakan / Let 3x – 7 = y = 7 – 15x
y + 7 Penerbitan Pelangi Sdn. Bhd.
x =
3 (b)
x + 7 7
f (x) = x –1 0 2
−1
3 15
(b) f (x) = 3(3x – 7) – 7 y 22 7 0 23
2
f (x) = 9x – 28
2
4s
4s
f 2 1 2 = 9 1 2 – 28 y
3 3
20 = 12s – 28
s = 4 23
22
7
x
–1 0 7 2
Kertas 2 ––
15
Klu Soalan Julat/Range y : 0 < y < 23
Pintasan-x iaitu nilai x apabila y = 0 perlu dicari sebagai titik di mana
suatu graf linear dipantul menjadi bentuk-V.
The x-intercept, which is value of x when y = 0, must be determined as it is the point
at which the linear graph is reflected to form a V-shape.
1. Fungsi f dan g masing-masing ditakrifkan oleh f : x
Buku → 4 – 5x dan g : x → 3x – 5.
Teks The functions f and g are defined as f : x → 4 – 5x and
ms. 2-19
g : x → 3x – 5.



20





01-[M&M Mate(T) Tg4] 2021.indd 20 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi

Klu Soalan x = 4 – u
2
Titik pusingan (x, y) bagi graf kuadratik ditentukan dengan mengambil g(u) = (4 – u) – 6(4 – u) + 8
2
–1
x = purata pintasan-x iaitu 2 + 4 = 3 dan y = |gf (3)|. = 16 – 4u – 4u + u – 24 + 6u + 8
2 2 1
The turning point (x, y) of a quadratic graph is determined by taking x = average of = u – 2u
2
the x-intercepts which is 2 + 4 = 3 and y = |gf (3)|. g(x) = x – 2x
–1
2
Membanding dengan g(x) = ax + bx BAB
2
2. Fungsi f dan g diberi oleh f(x) = 4 – x dan Compairing with g(x)= ax + bx,
2
2
Buku g(x) = ax + bx, dengan keadaan a dan b ialah a = 1, b = –2
Teks pemalar.
ms. 2-30
The functions f and g are given by f(x) = 4 – x and (b) y = |gf (x)|
–1
g(x) = ax + bx where a and b are constants. = |x – 6x + 8|
2
2
–1
(a) Diberi fungsi gubahan gf → x – 6x + 8, = |(x – 2)(x – 4)|
2
tentukan nilai a dan nilai b. Apabila/ When y = 0: x = 2, x = 4
Given the composite function gf (x) = x – 6x + 8, Apabila/ When x = 0: y = 8
2
–1
determine the value of a and of b. Apabila/ When x = 7: y = |(7 – 2)(7 – 4)| = 15
(b) Lakar graf y = |gf (x)| untuk domain 0 < x < 7
−1
dan nyatakan julat yang sepadan dengannya. f(x)
−1
Sketch the graph of y = |gf (x)| for the domain
0 < x < 7 and state the corresponding range. 15
(a) f(x) = 4 – x
Mengambil / Taking y = f(x), 8
4 – x = y
4 – y = x
f (x) = 4 – x (3, 1)
–1
x
0
Diberi / Given: Penerbitan Pelangi Sdn. Bhd. 2 4 7
–1
2
gf (x) = x – 6x + 8
g(4 – x) = x – 6x + 8 Julat/Range : 0 < f(x) < 15
2
Mengambil / Taking,
4 – x = u
























21





01-[M&M Mate(T) Tg4] 2021.indd 21 20/12/2022 1:43 PM

Matematik Tambahan Tingkatan 4 Bab 1 Fungsi
Sudut KBATKBAT KBAT

EKSTRA
1

BAB Rajah di atas menunjukkan pemetaan y kepada x di bawah fungsi f(y) x y z
1
= 5y – 3 dan pemetaan y kepada z di bawah fungsi g(y) = my , y ≠ .
4
Diagram above shows the mapping of y onto x by the function f(y) = 5y – 3 and 1
m 1 2 –2
the mapping of y onto z by the function of g(y) = 4y – 1 , y ≠ 4 .
(a) Cari nilai m.
Find the value of m.
(b) Cari fungsi yang memetakan x kepada y.
Find the function which maps x onto y.
(c) Cari fungsi yang memetakan x kepada z.
Find the function which maps x onto z.
(d) Lakar rajah untuk menunjukkan pemetaan fg(1).
Sketch a diagram to show the mapping of fg(1).


m (c) Fungsi yang memetakan x kepada z ialah gf (x).
–1
(a) g(y) =
4y – 1 The function that mapes x onto z is gf (x).
–1
Daripada rajah / From the diagram, x + 3
–1
g(1) = 2 gf (x) = g 1 5 2
m –6
= –2 Penerbitan Pelangi Sdn. Bhd.
=
m = –6 4 1 x + 3 2 – 1
5
–6
(b) f(y) = 5y – 3 =
Katakan / Let f (y) = x 1 4x + 12 – 5 2
–1
f(x) = y 5
5x – 3 = y 30 7
–1
+ 3 gf (x) = – , x ≠ –
x = 4x + 7 4
5
y + 3
–1
f (y) = (d) fg(1) = f (–2)
5
x + 3 = 5(–2) – 3
Jadi / So, f (x) = = –13
–1
5
1020c










Jawapan
Enrolment key Bab 1
m*mAtT4*M



22





01-[M&M Mate(T) Tg4] 2021.indd 22 20/12/2022 1:43 PM

Modu
Modu
lE
lE
Modu lE & TINGKATAN
ModulE &&
&
MoRE
MoRE
MoRE
MoRE KSSM



MATEMATIK TAMBAHAN Additional Mathematics



CIRI-CIRI HEBAT


STUDI 1 MINIT PRAKTIS SPM & EKSTRA KLU SOALAN i-THINK/KBAT

Fakta penting bagi setiap bab Latihan berorientasikan SPM Tip membantu menjawab Penerapan soalan-soalan
yang telah diringkaskan untuk disediakan di akhir setiap bab soalan-soalan Kertas 2 di berformat i-THINK dan
mempercepat ulang kaji. dan juga di dalam kod QR. bahagian Praktis SPM. berbentuk aras tinggi.
Kod
QR
LEMBARAN PBD DWIBAHASA JAWAPAN LENGKAP

Lembaran kerja PBD tambahan Meningkatkan pemahaman teks Jawapan boleh disemak terus
yang meliputi semua bab melalui penggunaan bahasa di belakang setiap bab atau di
disediakan dalam kod QR. Melayu dan bahasa Inggeris. halaman Kandungan melalui
kod QR.
Kod Kod
QR QR

Eksklusif
Judul dalam Siri Module & More Cara Mengakses POT Eksklusif
(Portal Ujian Soalan Objektif)
Subjek/Tingkatan 4 5
Biologi Biology 1 Imbas kod QR atau layari link bagi POT PELANGI
untuk Create new account. ONLINE TEST
Fizik Physics
2 Semak e-mel untuk mengaktifkan akaun.
Kimia Chemistry
Matematik Mathematics 3 Log in ke akaun anda.
Matematik Tambahan 4 Masukkan Enrolment Key yang boleh dijumpai di
Additional Mathematics halaman akhir setiap bab buku.
Sejarah 5 Mulakan ujian!















RC184133S



PELANGI


Click to View FlipBook Version