The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by PENERBITAN PELANGI SDN BHD, 2023-01-12 00:55:21

Module & More Matematik Tambahan TG5

WM: RM13.50
EM: RM13.90

PELANGI BESTSELLER



ModulE
Modu
Modu lE &
lE
&
&
ModulE &

MoRE
MoRE
MoRE
MoRE










Pembelajaran BERPANDU dan SISTEMATIK


MATEMATIK



TAMBAHAN TINGKATAN




Additional Mathematics DWIBAHASA


Dr. Pauline Wong Mee Kiong
(Penulis Buku Teks) KSSM



Latihan modular
Studi 1 Minit

Praktis SPM
Eksklusif
Klu Soalan Eksklusif
i-THINK/KBAT Format

Praktis Ekstra SPM Kod QR
Lembaran PBD Kod QR PELANGI SPM
ONLINE TEST
Jawapan Kod QR
https://qr.pelangibooks.com/?u=POTMT5 Terkini







Lembaran
PBD dengan
Jawapan
Bonus Digital

Kandungan








Bab Sukatan Membulat 1 Bab Pengamiran 55
1 Circular Measure 3 Integration


1.1 Radian ............................................................................... 1 3.1 Pengamiran Sebagai Songsangan Pembezaan ............ 55
Radian
Integration as the Inverse of Differentiation
1.2 Panjang Lengkok Suatu Bulatan .................................... 3
Arc Length of a Circle 3.2 Kamiran Tak Tentu ........................................................ 57
Penerbitan Pelangi Sdn. Bhd.
1.3 Luas Sektor Suatu Bulatan ............................................ 10 Indefinite Integral
Area of Sector of a Circle 3.3 Kamiran Tentu ............................................................... 61
1.4 Aplikasi Sukatan Membulat .......................................... 16 Definite Integral
Application of Circular Measures 3.4 Aplikasi Pengamiran ..................................................... 75
Application of Integration
Praktis SPM 1 .......................................................................... 18

Praktis Ekstra SPM 1 Kod QR .......................................... 18 Praktis SPM 3 .......................................................................... 77
Sudut KBAT ............................................................................ 21 Praktis Ekstra SPM 3 Kod QR .......................................... 77

........................................................................................ 21 Sudut KBAT ............................................................................ 81

......................................................................................... 81


Bab Pembezaan 22
2 Differentiation


2.1 Had dan Hubungannya dengan Pembezaan ...............22 Bab Pilih Atur dan Gabungan 82
Limit and its Relation to Differentiation 4 Permutation and Combination
2.2 Pembezaan Peringkat Pertama ..................................... 25
The First Derivative 4.1 Pilih Atur ......................................................................... 82
2.3 Pembezaan Peringkat Kedua ........................................ 33 Permutation
The Second Derivative 4.2 Gabungan ........................................................................ 91
2.4 Aplikasi Pembezaan ....................................................... 36 Combination
Application of Differentiation
Praktis SPM 4 .......................................................................... 96
Praktis SPM 2 .......................................................................... 52
Praktis Ekstra SPM 4 Kod QR .......................................... 96
Praktis Ekstra SPM 2 Kod QR ...........................................52
Sudut KBAT ............................................................................ 54 Sudut KBAT ............................................................................ 96

......................................................................................... 54 ........................................................................................ 96





iii





kandungan M&M Mate_T Tg5.indd 3 08/12/2022 9:17 AM

Bab Taburan Kebarangkalian 97 Bab Pengaturcaraan Linear 157
5 Probability Distribution 7 Linear Programming


5.1 Pemboleh Ubah Rawak ................................................. 97 7.1 Model Pengaturcaraan Linear .................................... 157
Random Variable Linear Programming Model
5.2 Taburan Binomial ........................................................ 104
7.2 Aplikasi Pengaturcaraan Linear ................................. 161
Binomial Distribution Application of Linear Programming
5.3 Taburan Normal ........................................................... 110
Normal Distribution Praktis SPM 7 ........................................................................ 168
Praktis Ekstra SPM 7 Kod QR ......................................... 168
Praktis SPM 5 ........................................................................ 117
Sudut KBAT .......................................................................... 171
Penerbitan Pelangi Sdn. Bhd.
Praktis Ekstra SPM 5 Kod QR ........................................ 117
....................................................................................... 171
Sudut KBAT .......................................................................... 120

...................................................................................... 120
Bab Kinematik Gerakan Linear 172
8 Kinematics of Linear Motion


Bab Fungsi Trigonometri 121 8.1 Sesaran, Halaju dan Pecutan sebagai Fungsi Masa .... 172
6 Trigonometric Functions Displacement, Velocity and Acceleration as a Function of Time
8.2 Pembezaan dalam Kinematik Gerakan Linear ...............
6.1 Sudut Positif dan Sudut Negatif ................................. 121 ..........................................................................................180
Positive Angles and Negative Angles Differentiation in Kinematics of Linear Motion
6.2 Nisbah Trigonometri bagi Sebarang Sudut .............. 124 8.3 Pengamiran dalam Kinematik Gerakan Linear ..............
Trigonometric Ratios of any Angle ......................................................................................... 183
6.3 Graf Fungsi Sinus, Kosinus dan Tangen .....................131 Integration in Kinematics of Linear Motion
Graphs of Sine, Cosine and Tangent Functions 8.4 Aplikasi Kinematik Gerakan Linear .......................... 188
Applications of Kinematics of Linear Motion
6.4 Identiti Asas .................................................................. 139
Basic Identities Praktis SPM 8 ......................................................................... 191

6.5 Rumus Sudut Majmuk dan Rumus Sudut Berganda ...... Praktis Ekstra SPM 8 Kod QR ........................................ 191
..........................................................................................142 Sudut KBAT .......................................................................... 193
Addition Formulae and Double Angle Formulae
....................................................................................... 193
6.6 Aplikasi Fungsi Trigonometri .................................... 146 Kertas Pra-SPM ..................................................................... 194
Application of Trigonometric Functions
Praktis SPM 6 ........................................................................ 154 Lembaran PBD dan Jawapan
http://www.epelangi.com/Module&More2021/
MatematikTambahan/T5/LembaranPBD.pdf
Praktis Ekstra SPM 6 Kod QR ........................................ 154
Sudut KBAT .......................................................................... 156
Jawapan
http://www.epelangi.com/Module&More2021/
....................................................................................... 156 MatematikTambahan/T5/JawapanKeseluruhan.pdf




iv





kandungan M&M Mate_T Tg5.indd 4 08/12/2022 9:17 AM

Bab Sukatan Membulat
1 Circular Measure



1

Radian Analisis Soalan SPM 2021
1.1 Radian Kertas 1 Kertas 2 BAB
S5(a)
S2
STUDI 1 Minit Buku Teks: 2 – 4



1. Sudut boleh diukur dalam darjah dan minit atau radian 3. Apabila panjang lilitan ialah 2πj, maka sudut yang
(rad). tercangkum ialah 2π radian.
Angle can be measured in degrees and minutes or in radians When the circumference is 2πj, then the subtended angle is 2π
(rad). radian.
Penerbitan Pelangi Sdn. Bhd.
2. Sudut yang dicangkum pada pusat bulatan oleh 4. Diketahui bahawa sudut bulatan ialah 360°, maka 2π
lengkok yang sama panjang dengan jejarinya radian adalah setara dengan 360°.
ditakrifkan sebagai 1 radian. Lihat contoh dalam rajah. It is known that the angle of a circle is 360° , then 2π radian is
The angle subtended at the centre of the circle by the arc length equivalent to 360°.
which is the same length as the radius is defined as 1 radian. 5. Secara am, kita boleh menulis q = q rad atau
360° 2π rad
q rad × 180° π × q°
j q° = dan q rad = .
O j O 2 rad 2j π rad 180°
1 rad In general, we can write q = q rad or q° = q rad × 180° and
j j 360° 2π rad π rad
j π × q°
q rad = 180° .

1. Padankan setiap yang berikut kepada radian. TP 1
Map each of the following to radians.
Sudut dalam darjah dan minit Sudut dalam radian
Angles in degrees and minutes Angles in radians
CONTOH 5.5717 rad
319° 14’
Penyelesaian
1
bm 10pt = — Gunakan/ Use Tip Penting
2 q° q rad
360° = 2π rad Boleh diringkaskan
kepada
1 Can be simplified to
bi 8.5pt = —
2 319°14’ = q rad q°π
360° 2π rad q = 180°
bubble 7pt = – 1
2 319°14’ × 2π
q = = 5.5717 rad
360°
(a) 143°22’ 4.4872 rad

(b) 257°6’ 2.5022 rad
(c) 27°54’ 2.6791 rad

(d) 103.58° 0.4869 rad
(e) 153.5° 1.8078 rad




1





01 M&M Mate T Tg5.indd 1 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

2. Tukarkan setiap yang berikut kepada darjah dan minit. TP 1
Convert each of the following into degree and minutes.

1 CONTOH (a) 5 rad

2.2 rad 5
BAB Penyelesaian: q° = 3π rad

Gunakan/Use Tip Penting 360° 2π rad
q° q rad Boleh diringkaskan
= kepada 360° × 5
360° 2π rad Can be simplified to 3π
q° 2.2 rad q° = 180° q° = 2π
= π
360° 2π rad
2.2 × 360° = 300°
q =

Penerbitan Pelangi Sdn. Bhd.
= 126°3’ atau/or 126.05°




2 (c) 2.15 rad
(b) rad
9 q°
2 = 2.15 rad
rad 360° 2π rad
q° 9
= 360° × 2.15
360° 2π rad q° =

2
360° × = 123.19° atau/or 123°11’
q° = 9

= 12.73° atau/or 12°44’









(d) 0.7π rad 5
(e) π rad
4
q° 0.7π rad
= 5π
360° 2π rad q° 4 rad
=
360° × 0.7π 360° 2π rad
q° =
2π 5π
360° ×
= 126° q° = 4

= 225°












2





01 M&M Mate T Tg5.indd 2 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

Panjang Lengkok Suatu Bulatan
1.2 Arc Length of a Circle Buku Teks: 5 – 11

STUDI 1 Minit 1

BAB
1. Panjang lengkok, s, suatu bulatan berkadaran dengan 5. Panjang lengkok major adalah lebih panjang daripada
sudut yang tercangkum di pusat bulatan. Maka, semakin panjang lengkok minor.
besar sudut yang dicangkum, semakin besar panjang The major arc length is longer than the minor arc length.
lengkok. 6. Kawasan berlorek yang dibatasi oleh lengkok AB dan
The arc length, s, of a circle is directly proportional to the size of the
angle subtended at the centre of the circle. Hence, the bigger the perentas AB dinamakan tembereng bulatan.
angle, the longer the arc length. The region bounded by the arc length AB and the chord AB is
called a segment.
2. Secara am, kita boleh tulis seperti yang berikut. A
In general, we can write as follows. j
Penerbitan Pelangi Sdn. Bhd.
O θ
q° q rad panjang lengkok (arc length)
= =
360° 2π rad panjang lilitan (circumference)
B
dengan panjang lilitan = 2πj dan jejari ialah j.
where the circumference = 2πj and the radius is j.
7. Perentas AB dapat diperolehi dengan petua kosinus,
2
3. Pasangan yang digunakan untuk menyelesaikan AB = j + j − 2j kosq dengan q dalam darjah atau
2
2
masalah bergantung kepada sudut yang diberi dalam AB = 2j sin q
darjah atau radian. 2
The pair to solve a problem will depend on whether the angle The chord AB can be obtained by using cosine rule,
given is in degrees or radians. AB = j + j − 2j cosq with the angle q is in degrees or
2
2
2
q
4. Jika sudut q ialah dalam radian, panjang lengkok boleh AB = 2j sin 2 .
diberi oleh s = jq.
If the angle q is in radians, the arc length can be given by s = jq.
3. Tentukan panjang lengkok, s bagi setiap bulatan yang diberi. TP 1
Determine the arc length, s for each of the following given circles.
(a)
CONTOH
Penyelesaian: s
Oleh kerana sudut ialah O 3.2 cm A A B
dalam radian, kita pilih 1.2 rad
Since the angle is in radian, we s 7.4 cm 0.8 rad
choose O
B
q rad panjang lengkok, s/ arc length, s
2π rad = 2πj
1.2 rad panjang lengkok, s/ arc length, s 0.8 rad s
2π rad = 2π(3.2 cm) 2π rad = 2π(7.4 cm)

Panjang lengkok, s
Panjang lengkok, s
Arc length, s Arc length, s
1.2 rad × 2π(3.2 cm) 0.8 rad × 2π(7.4 cm)
= =
2π rad Kaedah Alternatif 2π rad
= 5.92 cm
= 3.84 cm Guna/Use AB = jθ
= 3.2(1.2)
= 3.84 cm





3





01 M&M Mate T Tg5.indd 3 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

(b) (c)

A B
125
1 O 4.5 cm 10.2 cm
B O
0.5 rad
BAB s
A
s

0.5π rad s
= Sudut yang dicangkum = 360° – 125° = 235°
2π rad 2π(4.5 cm) Angle subtended
Panjang lengkok, s 235° s
Arc length, s 360° = 2π(10.2 cm)

= 0.5π rad × 2π(4.5 cm) Panjang lengkok, s
2π rad Arc length, s
= 7.07 cm 235° × 2π(10.2 cm)
=
360°

= 41.84 cm










(e)
(d) = Penerbitan Pelangi Sdn. Bhd.
s s
A B
8.4 cm
O
20.5 cm O
4.5 rad
1.3 rad
A B


Sudut yang dicangkum = (2π − 1.3) rad Sudut yang dicangkum = (2π − 4.5) rad
Angle subtended Angle subtended
(2π – 1.3) rad s (2π – 4.5) rad s
=
2π rad 2π(20.5 cm) 2π rad 2π(8.4 cm)
Panjang lengkok, s Panjang lengkok, s
Arc length, s Arc length, s

= (2π – 1.3) rad × 2π(20.5 cm) = (2π – 4.5) rad × 2π(8.4 cm)
2π rad 2π rad

= 102.16 cm = 15 cm













4





01 M&M Mate T Tg5.indd 4 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

4. Tentukan jejari bulatan, j dengan diberikan panjang lengkok, s dan sudut bagi setiap bulatan yang berikut.
Determine the radius, j of the circle given the arc length, s and the angle of each of the following circles. TP 2


(a) 1
CONTOH 20.3 cm
8.4 cm 204 BAB
A B
1.4 rad O
j j
O


204° = s
Penyelesaian: 360° 2πj
Penerbitan Pelangi Sdn. Bhd.
Oleh kerana sudut ialah dalam radian, kita pilih 20.3 × 360°
Since the angle is in radian, we choose j = 204° × 2π
q rad panjang lengkok, s / arc length, s
= = 5.7 cm
2π rad 2πj
Apabila diringkaskan, kita dapat
When simplified, we get
s
j = q
8.4
= = 6 cm
1.4

(b) 14.5 cm (c)
0.8 rad
O O
j j
1.6 rad
11.5 cm
14.5 11.5
j = j =
2π – 1.6 2π – 0.8π
= 3.1 cm = 3.05 cm





(d) (e)
14.2 cm
3 rad
4
j
O O j
105
3 cm


360° – 105° s 3
= j =
360° 2πj 3
14.2 × 360° 2π – 4 π
j =
255° × 2π = 0.76 cm
= 3.19 cm



5





01 M&M Mate T Tg5.indd 5 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

5. Tentukan sudut tercangkum, q dalam radian, di pusat bulatan dengan diberikan jejari bulatan, j dan panjang
lengkok, s bagi setiap bulatan yang berikut. TP 3
Determine the angle subtended, q in radians, at the centre of the circle given the radius, j and the arc length, s for each of the
1 following circles.

BAB CONTOH (a) 7.2 cm



6.1 cm O
P 4.4 cm
O

Q
9.8 cm 7.2
(2π – q) =
Penerbitan Pelangi Sdn. Bhd.
Penyelesaian: 6.1
q rad panjang lengkok, s / arc length, s q = 5.1 rad
=
2π rad 2πj
Ini boleh dringkaskan kepada
This can be simplified into
s
q =
j
(2π – q) = 9.8
4.4
q = 4.06 rad

(b) 4.8 cm (c)

=
=
O 3.2 cm O
1.8 cm


2.8 cm

4.8 2.8
(2π – q) = (2π – 2q) =
3.2 1.8
q = 4.78 rad q = 2.36 rad


(d) (e) 11.4 cm

=


2.5 cm
O O
=
3.2 cm
=
6.3 cm 8.2 cm
2πj = 6.3 + 8.2 + 11.4
(2π – q) = 3.2 j = 4.12 cm
3 2.5 11.4
q = 2.44 rad q = 4.12
= 2.77 rad




6





01 M&M Mate T Tg5.indd 6 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

6. Tentukan perimeter tembereng bagi setiap bulatan berpusat O yang berikut. TP 4
Determine the perimeter of the segment of each of the following circles with centre O.

(a) 1
CONTOH
P
9.6 cm BAB
O
O 6.2 cm P Q 0.4 rad
2 rad
Q
0.4π × 360°
0.4π rad =
Penyelesaian: 2π
Perentas PQ dapat diperoleh dengan petua = 72°
kosinus, iaitu PQ = j + j − 2j kos q , dengan q Maka/Hence,
2
2
2
dalam darjah. PQ = 9.6 + 9.6 − 2(9.6) kos72°
2
2
2
The length of the chord PQ can be obtained by using the Arc length PQ Bhd.

= 11.28 cm
cosine rule, that is PQ = j + j − 2j cos q , such that q Panjang lengkok PQ = jq
2
Penerbitan Pelangi Sdn.
2
2
is in degrees. = 9.6(0.4π)
2 × 360°
2 rad = = 114.59° = 12.06 cm
2π Perimeter = (12.06 + 11.28) cm
Maka/Hence, = 23.34 cm
2
PQ = 6.2 + 6.2 − 2(6.2) kos 114.59°
2
2
= 10.43 cm
Panjang lengkok PQ = jq = 6.2(2)
Arc length PQ
= 12.4 cm
Perimeter = (12.4 + 10.43) cm = 22.83 cm
(b) (c)
P
8 cm P 3 cm 4.5 rad
O O
30 cm Q Q

Panjang lengkok minor PQ = 2π(8) – 30
Minor arc length PQ = 20.27 cm Panjang lengkok minor PQ = 2π(3) – 4.5(3)
20.27 Minor arc length PQ = 5.35 cm
∠POQ = ∠POQ = 2π − 4.5
8 = 1.78 rad
= 2.53 rad = 102.17°
= 145.14° Maka, PQ = 3 + 3 − 2(3) kos102.17°
2
2
2
Maka, PQ = 8 + 8 −2(8) kos145.14° Hence = 4.67 cm
2
2
2
= 15.27 cm Perimeter = 5.35 cm + 4.67 cm
Perimeter = 15.27 + 20.27 = 10.02 cm
Hence = 35.54 cm



7





01 M&M Mate T Tg5.indd 7 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

(d) (e) R
Q =
P
=
1 5.3 cm
Q O
O rad P
BAB 12 1.4 rad
7.3 cm

∠POQ = 150° Panjang lengkok PQR = 2π(5.3) − 5.3(1.4π)
Panjang jejari/Arc length, j Arc length PQR = 10 cm
(7.3 × 360°) ∠POQ = (2π − 1.4π) ÷ 2
= = 1.99 cm
(210 × 2π) = 0.3π
Maka/Hence, = 54°
Penerbitan Pelangi Sdn. Bhd.
2
PQ = 1.99 + 1.99 − 2(1.99) kos150° Panjang perentas PQ
2
2
= 3.84 cm Length of chord PQ
2
2
2
150° = 5.3 + 5.3 − 2(5.3) kos 54°
Panjang lengkok = × 2π(1.99) = 4.81 cm
Arc length 360° Perimeter = (4.81 × 2 + 10) cm
= 5.2 cm = 19.62 cm
Perimeter = 5.2 cm + 3.84 cm
= 9.04 cm
7. Selesaikan masalah yang melibatkan panjang lengkok. TP 4
Solve the problems involving the arc lengths.
(a)
CONTOH A

4.7 cm 9.2 cm
P Q
A B O 0.7 rad D B
O

Rajah di atas menunjukkan sebuah sektor
AOB berpusat O dan mempunyai jejari 9.2 cm.
Rajah di atas menunjukkan dua bulatan berpusat Cari perimeter rantau berlorek itu.
O dan masing-masing mempunyai jejari 8 cm dan The diagram above shows a sector AOB with centre
14 cm. Cari perimeter rantau berlorek itu. O and radius 9.2 cm. Find the perimeter of the
The diagram above shows two circles with centre O shaded region.
and with radii 8 cm and 14 cm respectively. Find the 0.7 × 360°
perimeter of the shaded region. 0.7 rad = 2π = 40.1°
Penyelesaian: sin 40.1° = AD
s 4.7 9.2
∠POQ = = AD = 5.93 cm
j 14
2
= 0.336 rad OD = 9.2 − 5.93 2
Panjang lengkok AB = 7.03cm
Arc length AB Panjang lengkok = 9.2 × 0.7
= 8(0.336) = 2.69 cm Arc length = 6.44 cm
Perimeter = 2.69 + 6(2) + 4.7 Perimeter = 5.93 + 6.44 + (9.2 – 7.03)
= 19.39 cm = 14.54 cm




8





01 M&M Mate T Tg5.indd 8 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

(b) (c)
O M P A

1
P
R
O
N Q B BAB

Rajah di atas menunjukkan dua sektor, POQ Rajah di atas menunjukkan dua sektor, AOB
dan MON. M ialah titik tengah OP. dan APB. Diberi nisbah jejari OA kepada PA
Ungkapkan α dalam sebutan q jika perimeter ialah 3 : 1, AP = 2 cm dan perimeter rantau
MPQR dan ORN adalah sama. berlorek ialah 10 cm.
The diagram above shows two sectors, POQ and The diagram above shows two sectors, AOB and
MON. M is the midpoint of OP. Express α in terms of APB. Given that the ratio of radius OA to PA is 3 : 1,
q if the perimeters of MPQR and ORN are the same. AP = 2 cm and the perimeter of the shaded region is
Penerbitan Pelangi Sdn. Bhd.
10 cm.
Katakan OM = j cm (i) Tunjukkan bahawa q = (5 − 3α) rad.
Let Show that q = (5 − 3α) rad.
Maka, jq + 2j + 2jq = 2j + jα (ii) Jika α = 30°, cari nilai q, dalam radian.
Hence, α = 3q If α = 30°, find the value of q, in radians.

(i) Diberi AP = 2 cm, maka OA = 6 cm
Given hence
6α + 2q = 10
q = 5 − 3α
(ii) α = 30°
π
= rad
6
π
q = 5 − 3  
6
= 3.43 rad
(d) A (e) K
M
P O - C
3
4 = =
O
B
N L
Rajah di atas menunjukkan satu semibulatan Rajah di atas menunjukkan sektor KOL
berpusat O dan satu sektor berpusat P dan berpusat O dan MLN berpusat L. Diberi bahawa
∠APB = π . Cari jejari PA jika perimeter rantau OM = ML = 5 cm, dan ∠MON = π rad, cari
3 4
berlorek ialah 35π cm. perimeter rantau berlorek itu.
6 The diagram above shows sector KOL with centre O
The diagram above shows a semicircle with centre O and sector MLN with centre L. Given that OM = ML =
π
π
and a sector with centre P and ∠APB = . Find the 5 cm, and ∠MON = rad, find the perimeter of the
3 4
radius PA if the perimeter of the shaded region is shaded region.
35π
cm.
6 Perimeter = OM + ON + panjang lengkok/arc
length MN + MK + panjang lengkok/
π = 60° j arc length KL + ML
3 OA = 2 π
Maka, AP = AB = j. 35π πj πj = 5 + (5 2 − 5) + 5   + (5 2 − 5) +
4
π
Hence = 6 = 3 + 2 5 2   + 5
j = 7 cm 4
= 23.62 cm


9





01 M&M Mate T Tg5.indd 9 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

Luas Sektor Suatu Bulatan
1.3 Area of Sector of a Circle Buku Teks: 12 – 19

STUDI 1 Minit
1
BAB 1. Didapati bahawa luas sektor AOB bagi suatu bulatan 3. Luas tembereng/Area of a segment

adalah berkadaran dengan saiz sudut, q rad yang = luas sektor – luas segi tiga A
tercangkum di pusat. area of sector − area of triangle
It is known that the area of the sector AOB of a circle is proportional = q j – 1 j sin q O θ
2
2
to the size of the angle, q rad which is subtended at the centre. 2 2 j
Maka, luas sektor B
Hence, the area of a sector
q O 4. Dari apa yang telah dipelajari, hubungan secara am
2
Penerbitan Pelangi Sdn. Bhd.
= × πj j
2π θ A antara sudut, panjang lengkok dan luas sektor adalah
q seperti berikut.
= j 2 From the earlier studies, the general relationship between the
2 B
2. Jika diungkapkan dalam nisbah, kita dapat angles, arc length and the area of sector are as follows.
luas sektor q q° q° = q rad = panjang lengkok, s = luas sektor
= 2π = 360° 2π rad 2πj luas bulatan
luas bulatan 360° q q° q rad arc length, s area of sector
If expressed in the ratio form, we get area of sector = = q° = = =
area of circle 2π 360° 360° 2π rad 2πj area of circle




8. Tentukan luas sektor bagi setiap bulatan yang berikut. Berikan jawapan anda kepada dua tempat perpuluhan.
Determine the area of the sector for each of the following circles. Give your answer to two decimal places. TP 3


(a)
CONTOH

P
3.5 cm
6 cm Q
O
O 5
2.3 rad 6 rad
P Q
Sudut yang tercangkum = 5 π rad
Angle subtended 6
Penyelesaian: 5
Sudut yang tercangkum = (2π – 2.3) rad 6 π
Angle subtended Maka, luas = (3.5) = 16.04 cm 2
2
Hence, the area 2
Maka, luas =  2π – 2.3  (6) = 71.70 cm 2
2
2
Hence, the area











10





01 M&M Mate T Tg5.indd 10 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

(b) (c)
P
1
O 215 O
A B
7.8 cm Q BAB
C


AOB ialah diameter dan panjangnya ialah Sudut yang tercangkum = (360 – 215)°
10.4 cm, ∠AOC = 2∠BOC.
AOB is the diameter and the length is 10.4 cm, Angle subtended = 145°
∠AOC = 2∠BOC. Maka, luas = 145° × π × ( 7.8) 2
2 Hence, the area 360°
Sudut yang tercangkum = π rad = 76.98 cm 2
Angle subtended 3

2
 
π
3
Maka, luas = ( 5.2)
2
Hence, the area 2
= 28.32 cm 2






(e)
(d) Maka, luas = Penerbitan Pelangi Sdn. Bhd.
6 cm A
10 cm
A
2.5 cm 3 rad
O B 5
B O


6 10
Sudut yang tercangkum = = 2.4 rad Jejari sektor =
Angle subtended 2.5 Radius of the sector 3π
5
2.4 × (2.5) = 7.50 cm 2 50
2
Hence, the area 2 = 3π cm
3 π
5
Maka, luas =   50  2

Hence, the area 2
= 26.53 cm 2














11





01 M&M Mate T Tg5.indd 11 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

9. Tentukan jejari bagi sektor bulatan yang berikut. Beri jawapan kepada dua tempat perpuluhan. TP 4
Determine the radius of the following sectors of circles. Give the answers to two decimal places.

1 CONTOH (a)

BAB


1.6 rad
3.5 rad


Diberi luas sektor ialah 20.5 cm . Diberi luas sektor ialah 10.21 cm .
2
2
Given the area of the sector is 20.5 cm . Given the area of the sector is 10.21 cm .
2
2
Penyelesaian:
luas sektor q Gunakan /Use
Gunakan = luas sektor q
luas bulatan 2π luas bulatan = 2π
Use area of sector = q area of sector q
area of circle 2π area of circle = 2π
20.5 = 1.6 10.21 2π – 3.5
πj 2 2π =
πj 2 2π
2
j = 20.5 × 2 10.21 × 2
1.6 j =
2
j = 5.06 cm 2π – 3.5
j = 2.71 cm
(c)
(b) Penerbitan Pelangi Sdn. Bhd.
O
38 cm
P
P
O
12 cm
Q Q

2
Diberi luas sektor ialah 42 cm dan panjang Diberi luas sektor ialah 85 cm dan panjang
2
lengkok PQ ialah 12 cm. lengkok PQ ialah 38 cm.
2
2
Given that the area of the sector is 42 cm and the Given that the area of the sector is 85 cm and the arc
arc length of PQ is 12 cm. length of PQ is 38 cm.
Gunakan/Use Gunakan/Use
panjang lengkok = luas sektor 38 = πj – 85
2
2πj luas bulatan 2πj πj 2
arc length area of sector 2(πj – 85)
2
2πj = area of circle j = 38
12 42 2
= 2(πj – 85) = 38j
2πj πj 2 πj – 19j – 85 = 0
2
42 × 2 19 ± (–19) – 4π(–85)
2
j = j =
12 2π
= 7 cm j = 9.04 cm




12





01 M&M Mate T Tg5.indd 12 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

(d) (e)


1
O
88
BAB
12.5 cm
2
Diberi luas sektor ialah 7.5 cm . Diberi luas sektor ialah 30 cm .
2
2
2
Given the area of the sector is 7.5 cm . Given the area of the sector is 30 cm .
Gunakan/ Use
Gunakan/ Use
luas sektor/area of sector = q 30 2 = 12.5
luas bulatan/area of circle 360° πj 2πj
7.5 = 88 j = 30 × 2
Penerbitan Pelangi Sdn. Bhd.
πj 2 360° 12.5
7.5 × 360° = 4.8 cm
j =
2
88π
j = 3.13 cm



10. Tentukan sudut tercangkum, q, dalam radian di pusat bulatan bagi yang berikut. Berikan jawapan anda kepada
dua tempat perpuluhan. TP 4
Determine the angle subtended, q, in radian at the centre of the circle for each of the following. Give your answer to two
decimal places.

(a)
CONTOH

4.8 cm

O
O 9.3 cm


Diberi luas sektor ialah 33 cm .
2
2
Diberi luas sektor ialah 18 cm 2 Given the area of the sector is 33 cm .
Given the area of the sector is 18 cm .
2
Gunakan/ Use
Penyelesaian: luas sektor q
=
luas sektor q luas bulatan 2π
Gunakan = area of sector q
luas bulatan 2π area of circle = 2π
Use area of sector = q 33 2π – q
area of circle 2π 2 =
18 q π(4.8) 2π
= 66π
π(9.3) 2 2π 23.04π = 2π – q
18 × 2
q = 2.865 = 2π – q
(9.3) 2
= 0.42 radian q = 2π − 2.865
= 3.42 radian





13





01 M&M Mate T Tg5.indd 13 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

(b) (c)

12 cm
1 j

BAB Diberi perimeter sektor ialah 15 cm dan luas
ialah 9 cm . Ungkapkan q dalam sebutan jejari,
2
Diberi luas sektor ialah 46 cm . j. Kemudian, cari nilai yang mungkin bagi j.
2
2
Given the area of the sector is 46 cm . Given the perimeter of the sector is 15 cm and the area
is 9 cm . Express q in terms of the radius, j. Hence, find
2
Gunakan/Use the possible values of j.
luas sektor panjang lengkok
=
luas bulatan 2πj 2j + jq = 15
15 − 2j
area of sector arc length q = j …… ➀
area of circle = 2πj 1 2
Penerbitan Pelangi Sdn. Bhd.
46 12 2 j q = 30 …… ➁
=
πj 2 2πj Gantikan ➀ ke dalam ➁
46 × 2 Substitute ➀ into ➁
j = = 7.67 cm
12 2  15 − 2j 
s = jq j j = 9
q = 12 = 1.56 radian 2
7.67 j(15 − 2j)
= 9
2
j(15 − 2j) = 18
15j – 2j = 18
2
2j – 15j + 18 = 0
2
(j – 6)(2j – 3) = 0
3
j = 6 atau/ or j =
2
(d) (e)


21 cm O

8 cm
2
Diberi luas sektor ialah 54 cm .
2
2
Diberi luas sektor ialah 43 cm . Given the area of the sector is 54 cm .
2
Given the area of the sector is 43 cm .
Gunakan/Use
1
× 8 × q = 43 luas sektor panjang lengkok q
2
2 = =
q = 1.34 radian luas bulatan 2πj 2π
area of sector arc length q
area of circle = 2πj = 2π
54 21 q
= =
πj 2 2πj 2π
54 × 2
j = = 5.14 cm
21
21
2π – q =
5.14
q = 2.2 radian

14





01 M&M Mate T Tg5.indd 14 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

11. Tentukan luas tembereng yang berlorek bagi suatu bulatan yang berikut. Berikan jawapan anda kepada dua
tempat perpuluhan. TP 4
Determine the area of the shaded segment for each of the following circles. Give your answer to two decimal places.
1
(a)
CONTOH
BAB
P
Q
5.3 cm Q 8.1 cm O
O
2.3 rad 4 rad
3
P
Penyelesaian: Luas berlorek/Shaded area
Luas berlorek = luas sektor POQ – luas segi tiga POQ
= luas sektor POQ – luas segi tiga POQ
Shaded area = area of sector POQ − area of triangle POQ area of sector POQ – area of triangle POQ
Luas sektor/Area of sector

1 1 Luas sektor = j 2π − 4π 
1 2
= j q = (5.3) (2.3) = 32.3 cm 2 2 3
2
2
2 2 Area of sector
 
2.3 = 1 (8.1) 2 2π
2.3 rad = × 360° = 131.78° 2 3

= 68.71 cm 2
Luas segi tiga/Area of triangle 2π
1 rad = 120°
= ×(5.3) × sin131.78° = 10.47 cm 2 3
2
2 Luas segi tiga = × (8.1) × sin 120°
1
2
Maka, luas tembereng Area of triangle 2
Hence, the area of the segment = 28.41 cm 2
Maka, luas tembereng = 68.71 − 28.41
= 32.3 − 10.47 Penerbitan Pelangi Sdn. Bhd.
= 21.83 cm 2 Hence, the area of segment = 40.3 cm 2
(b) Q (c)
P
1.4 rad O 4.3 cm
O B
A
3.5 cm 50
R 5.5 cm
S P
Diberi POR dan SOQ adalah garis lurus yang
melalui pusat O. 2 2 2
Given that POR and SOQ are straight lines passing Perentas AB = 5.5 + 5.5 − 2(5.5) kos50°
through the centre O. Chord AB = 4.65 cm
2
4.3 + 4.3 − 4.65 2
2
Luas sektor POS = luas sektor QOR Kos/ cos ∠AOB = 2(4.3) 2
area of sector POS = area of sector QOR ∠AOB = 65.46°
1 j q = 1 (3.5) (π − 1.4) = 1.14 rad
2
2
2 2 50° = 0.87 rad
= 10.67 cm 2
1.4 Luas tembereng = 1 (5.5) (0.87) − 1 (5.5) 2
2
1.4 rad = × 360° 2 2
2π Area of segment 1
2
= 80.21° sin50° + 2 (4.3) (1.14)−
2
Luas segi tiga = 1 × (3.5) × sin80.21° 1 2
Area of triangle 2 2 (4.3) sin65.46°
= 6.04 cm 2 2
Maka, luas tembereng = 2(10.67 − 6.04) = 3.7 cm
Hence, the area of segment = 9.26 cm 2
15




01 M&M Mate T Tg5.indd 15 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

Aplikasi Sukatan Membulat
1.4 Application of Circular Measures Buku Teks: 20 – 22

1
12. Selesaikan masalah yang melibatkan sukatan membulat yang berikut. TP 5
Solve the following problems involving the circular measures.
BAB
(a)
CONTOH
R
O
P
O
Q
Penerbitan Pelangi Sdn. Bhd.
P S Q
Rajah di atas menunjukkan sekeping kek yang Rajah di atas menunjukkan satu corak yang
telah dipotong kepada 8 keping yang bersaiz terdiri daripada satu sektor major OPRQ
sama daripada satu kek yang bulat berpusat O dan berpusat O dan sebuah semibulatan POQ
berjejari 18 cm. Cari berpusat S dengan jejari 8 cm.
The diagram above shows a piece of cake that is cut into Tunjukkan bahawa luas rantau berlorek ialah
8 pieces of the same size of a round cake at centre O and 32(π + 2) cm .
2
with a radius of 18 cm. Find The diagram above shows a pattern which is made
(i) sudut q dalam radian. up of a major sector OPRQ with centre O and a
the angle q in radian. semicircle POQ of centre S with a radius of 8 cm.
(ii) panjang lengkok PQ. Show that the shaded area is 32(π + 2) cm .
2
the arc length PQ.
(iii) jumlah luas permukaan kepingan kek itu jika OP = 8 2 cm
tebal kek ialah 5 cm.
the total surface area of the cake if the thickness is Luas sektor major
5 cm. Area of major sector
270°
Penyelesaian: = 360° × π(8 2) 2
1 2
(i) 8q = 2π. Maka/Hence, q = π = 96π cm
4
(ii) Panjang lengkok PQ = jq Luas segi tiga
Arc length PQ Area of triangle

= 18  1 π = 14.14 cm = 1 × (8 2)
2
4
2
(iii) Luas sektor/Area of sector = 64 cm 2
1 1
= × 18 × π Jumlah luas = 96π + 64
2
2 4
= 127.23 cm 2 Total area 2
Luas permukaan/Total surface area Luas semibulatan = π(8) = 64π
= 2(18 × 5) + 14.14 × 5 + 2(127.23) Area of semiclrcle
= 505.16 cm 2 Luas rantau berlorek
Area of shaded region
= 96π + 64 − 64π
= 32π + 64
= 32(π + 2) cm 2








16





01 M&M Mate T Tg5.indd 16 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

(b) (c)
Q
10 cm S
Q P 1
R
P T 8 cm
5 cm
5 cm O BAB
10 cm
1.5 rad
O


Rajah di atas menunjukkan sebuah kipas yang Rajah di atas menunjukkan dua sayap yang
dibina daripada dua keping kain, P dan Q yang serupa bagi sebuah kipas. OPQ, OTR dan QSR
berlainan. Cari beza luas kain P dan Q. adalah tiga semibulatan dengan diameter yang
The diagram above shows a fan made up ditunjukkan. Cari
of two different pieces of clothes, P and Q. The diagram above shows two similar wings of a
Find the difference of the area of the clothes P fan. OPQ, OTR and QSR are three semicircles with
and Q. the diameters as shown. Find
(i) perimeter keseluruhan dalam sebutan π.
Luas kain Q the total perimeter of the wings in terms of π.
Area of cloth Q (ii) luas keseluruhan dalam sebutan π.
1 1
= × (20) × 1.5 − × (15) × 1.5 the total area in terms of π.
2
2
2 2
2
= 300 cm – 168.75 cm 2 (i) Lilitan/ Circumference OPQ = 9π
= 131.25 cm 2 Lilitan/ Circumference QSR = 5π
Lilitan/ Circumference OTR = 4π
Luas kain P Perimeter = 2(9π + 5π + 4π) = 36π cm
Area of cloth P Penerbitan Pelangi Sdn. Bhd.
1 1
= × (15) × 1.5 − × (10) × 1.5 (ii) Luas semibulatan OPQ
2
2
2 2 Area of semicircle OPQ
= 168.75 cm – 75 cm 2 1 2
2
= 93.75 cm 2 = 2 × (9) × π
Beza luas Luas semibulatan QSR
Difference of area Area of semicircle QSR
2
= 131.25 cm − 93.75 cm 2 = 1 × (5) × π
2
= 37.5 cm 2 2
Luas semibulatan OTR =
Area of semicircle OTR
1
= × (4) × π
2
2
Luas keseluruhan
Total area
1
= 2 × π × (81 + 25 – 16)
2
= 90π cm 2














17





01 M&M Mate T Tg5.indd 17 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

Praktis SPM 1 Praktis Ekstra
SPM
SPM 1
1

BAB Kertas 1 Diberi bahawa panjang perentas ialah 8 cm, cari
Given the length of the chord is 8 cm, find
1. Rajah di bawah menunjukkan pandangan hadapan (a) sudut q, dalam radian,
Buku sebahagian mural berbentuk segi empat tepat the angle q, in radians,
Teks 10 m × 8 m. ABP dan DCP adalah dua sektor (b) luas rantau berlorek itu.
ms. 8-18 the area of the shaded region.
serupa berpusat P dan BC adalah selari dengan FE.
Bahagian berlorek perlu dicatkan. (a) 8 = 15 + 15 – 2(15) kos q
2
2
2
2
The diagram below shows a front view of a rectangular
2
2
mural of 10 m × 8 m. ABP and DCP are two similar kos q = 15 + 15 – 8 2
sectors with centre P and BC is parallel to FE. The shaded 2(15)(15)
region needs to be painted. q = 30.93°
F 10 m E
30.93° × 2π = 0.54 rad
B 4 m C 360°
8 m
(b) Luas tembereng
Area of segments
1
A P D = 1 (15) (0.54)− (15) sin30.93°
2
2
2
Cari perimeter dan luas bahagian berlorek itu. DPelangi Sdn. Bhd. 2
Find the perimeter and area of the shaded region. = 2.93 cm 2
4 = 5 + 5 – 2(5)(5) kos q F 10 m E
2
2
2
5 + 5 – 4 2
2
2
kos q =
2(5)(5) B 4 m C 8 m 3. Rajah menunjukkan satu bulatan dengan pusat O
q = 47.16° Buku dan jejari 7 cm. Diberi bahawa panjang lengkok
Teks
∠APB = ∠CPD ms. 2-18 minor AB ialah 10 cm, cari
180° − 47.16° A 5 m P The diagram shows a circle with centre O and radius
= 7 cm. Given that the minor arc length AB is 10 cm, find
2
= 66.42° = 1.159 rad
Panjang lengkok AB = CD = 5(1.159)
Arc length Penerbitan O B
Perimeter rantau berlorek
Perimeter of shaded region
= 2(8) + 10 + 4 + 2(5)(1.159) A
= 41.59 cm (a) sudut q, dalam radian,
66.42° the angle q, in radian,
2
Luas sektor APB = × π(5) = 14.49 cm 2
Area of sector APB 360° (b) luas sektor minor.
1 the area of the minor sector.
Luas ∆BCP = (5)(5)sin 47.16°
2
= 9.17 cm 2 (a) 10 = 7(2π − q)
Luas rantau berlorek = 10 × 8 − 9.17 – 2(14.49) 7q = 14π − 10
Area of shaded region = 41.85 m 2 q = 4.85 rad
1 1
2
2
2. Rajah di bawah menunjukkan sebuah sektor (b) Luas = j q = (7) (2π − q)
2
2
Buku berpusat O. Area 1 10
Teks The diagram below shows a sector with centre O. = (7) 2  
ms. 2-18 2 7
P
= 35 cm 2
15 cm

O Q
18
01 M&M Mate T Tg5.indd 18 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

Kertas 2 Klu Soalan

Klu Soalan Dari bentangan topi lampu tersebut, lengkok yang kecil merupakan
lilitan bagi bulatan kecil topi. Manakala, lengkok yang besar
(a) OE = EC dan BO adalah jejari. Gunakan kos ∠BOC. merupakan lilitan bagi bulatan besar topi. Lebar bagi kad adalah jejari 1
OE = EC and BO is the radius. Use cos ∠BOC. bagi lengkok besar.
1
(b) ∠BAO = ∠BOC. Cari jejari AB terlebih dahulu menggunakan From the net of the cover, the smaller arc is the circumference of the smaller circle of BAB
2
the cover. While, the larger arc is the circumference of the larger circle of the cover.
kos ∠BAC. The width of the cardboard is the radius of the larger sector.
1
∠BAO = ∠BOC. Find the radius of AB first using cos ∠BAC.
2
(c) Cari perbezaan antara luas sektor BAD dengan luas ∆ABE. 2. Rajah I menunjukkan topi lampu dan rajah II
Find the difference between the area of sector BAD with the area of ∆ABE.
Buku menunjukkan bentangannya dalam bentuk dua
Teks sektor berpusat O yang dilukis pada sekeping kad
1. Rajah di bawah menunjukkan sebuah semibulatan ms. 20-21 berbentuk segi empat tepat. KBAT Menganalisis
Buku ABC berpusat O dan berjejari 12 cm. BAD ialah Diagram I shows the cover of a lamp and diagram
Teks satu sektor berpusat A dan BE adalah berserenjang II shows the net of the cover drawn on a piece of a
ms. 20-21
Penerbitan Pelangi Sdn. Bhd.
dengan AC dengan keadaan E adalah titik tengah rectangular cardboard.
OC. 15 cm O
The diagram below shows a semicircle with centre O
and radius 12 cm. BAD is a sector with centre A and BE
is perpendicular to AC such that E is the midpoint of OC. 15 cm
B
25 cm
I II
A O E D C
Cari/Find (a) Hitung panjang minimum dan lebar kad yang
(a) sudut BOD dalam radian, diperlukan kepada integer yang terdekat.
the angle of BOD in radian, Calculate the minimum length and breadth, of the
(b) panjang lengkok BD, card required to the nearest integer.
the arc length BD, (b) Seterusnya, cari luas bagi kad yang tidak
(c) luas berlorek rantau dalam cm . digunakan.
2
the shaded area in cm . Hence, find the area of the unused card.
2
6 1
(a) kos q = = B 2 2 2
cos q 12 2 (a) PQ = 15 + 5 7.5 cm
π = 250 P
q = 60° = rad 2
3 A 12 cm O E D C PQ = 5 10 cm
6 cm 15 cm
Panjang lengkok AB = 2π(7.5)
18 Arc length AB = 15π Q
(b) kos 30° =
cos 30° AB Panjang lengkok CD = 2π(12.5) 12.5 cm
AB = 20.78 cm Arc length CD = 25π
π
Panjang lengkok BD = 20.78   Maka, 15π = jq ….. ➀
Arc length BD 6 25π = (j + 5 10 )q ….. ➁ E O j B D
= 10.88 cm ➁ ÷ ➀ 5 10

A
5 j + 5 10
1 π =
(c) Luas sektor BAD = (20.78) 2   3 j C
Area of sector BAD 2 6
= 113.05 cm 2 2j = 15 10
1 15 10
Luas ∆ABE = (18)(20.78) sin30° j = cm
Area 2 2
= 93.51 cm 2 q = 15π × 2 = 1.99 rad
Luas rantau berlorek = 19.54 cm 2 15 10
Area of shaded region = 113.84°





19





01 M&M Mate T Tg5.indd 19 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat

BO Jika jejari bulatan ialah 3 cm, cari
kos ∠EOC =
OC If the radius of the circle is 3 cm, find
(a) sudut ABC dalam radian,

 15 10 + 5 10 kos(180° − 113.84°) = EO the angle ABC in radians,
1 2 (b) panjang AC,
EO = 15.98 cm the length of AC,
BAB Panjang kad = 15.98 + 15 10 + 5 10 (c) luas rantau berlorek itu.
Length of card 2 the area of the shaded region.
π
= 55.5 cm (a) 60° = rad
≈ 56 cm 3
Lebar kad / Breadth of card A
= j + 5 10
P Q
15 10 O 30
= + 5 10
2
Penerbitan Pelangi Sdn. Bhd.
= 39.53 cm B 60 C
≈ 40 cm
(b) Luas kad tidak digunakan (b) AC = 2  3 
Area of unused card tan 30°

= 56 × 40 −  39.53 2 × 1.99 + = 10.39 cm
2
1 15 10 2 (1.99) (c) Luas satu tembereng
2  2  Area of a segment
π
1
1
= 1244.88 cm 2 = (10.39) 2   − (10.39) sin 60°
2
2 3 2
= 9.78 cm 2
Luas bulatan
Klu Soalan Area of circle
= π(3) 2
Oleh kerana AB = BC = AC, maka ketiga-tiga tembereng adalah sama
saiz. Cari jejari AC dengan menggunakan tan 30° = 6 . Jumlah luas
AC
Since AB = BC = AC, then the three segments are of the same size. Find the radius of Total area
6
AC by using tan 30° = . = 9π + 3(9.78)
AC
= 57.61 cm 2
3. Rajah di bawah menunjukkan sebuah logo
Buku syarikat. ABC ialah segi tiga sama sisi dalam satu
Teks bulatan yang dilukis dengan keadaan AB, BC dan
ms. 20-21
AC adalah tangen kepada bulatan kecil dengan
pusat O. Terdapat tiga tembereng serupa, P, Q dan
R yang dilukis dengan keadaan A, B dan C masing-
masing adalah pusat sektornya.
The diagram below shows a logo of a company. ABC
is an equilateral triangle in a circle that is drawn such
that AB, BC and AC as tangents to the small circle with
centre O. The three similar segments, P, Q and R are
drawn such that A, B and C are the centres respectively.
A

P Q
O
B C
R





20





01 M&M Mate T Tg5.indd 20 09/12/2022 12:20 PM

Matematik Tambahan Tingkatan 5 Bab 1 Sukatan Membulat
Sudut KBATKBAT KBAT

EKSTRA
1


Rajah di bawah menunjukkan sebuah bulatan (a) Cari sudut SOP dalam radian. BAB
berpusat O dan berjejari 10 cm. PQ dan SR adalah dua Find the angle of SOP in radians.
perentas yang selari dengan PQ = 10 cm dan ∠SOR = (b) Tentukan luas rantau berlorek itu.
120°. Determine the area of the shaded region.
The diagram below shows a circle with centre O and radius (c) Tunjukkan bahawa perimeter rantau berlorek ialah


10 cm. PQ and SR are two parallel chords such that PQ = 10 10 1 + 3 + π  cm.
cm and ∠SOR = 120°. KBAT Menganalisis 3
Show that the perimeter of the shaded region is

P Q 10 1 + 3 + π  cm.
S R 3
O






2
2
2
(a) PQ = 10 + 10 − 2(10) kos POQ Luas tembereng SR / Area of segment SR
2
1
2
2
10 + 10 − 10 2 = 1 (10) 2  2π  − (10) sin 120°
2
kos POQ = 2 3 2
2(100)
∠POQ = 60° = 61.42 cm 2
120°−60° Maka, luas berlorek
∠SOP = 1 Penerbitan Pelangi Sdn. Bhd.
Hence, the shaded area

2
π = 61.42 – 9.06
= 30° = rad = 52.36 cm 2
6
10 cm (c) Panjang lengkok SP = QR
P Q Arc length SP = QR
S R
π
120 10   = 5π
10 cm 6 3
O
2
2
2
SR = 10 + 10 − 2(10) kos 120°
2
SR = 10 3

(b) Luas tembereng PQ /Area of segment PQ Perimeter = 10 + 2   + 10 3
1 π 3
= (10) 2   − (10) sin 60° π
2

2 3 2 = 10 1+ + 3 
= 9.06 cm 2 3

Jawapan
Enrolment key Bab 1
M#maTT5#m


21





01 M&M Mate T Tg5.indd 21 09/12/2022 12:21 PM

Modu
Modu
lE
lE
Modu lE & TINGKATAN
ModulE &&
&
MoRE KSSM
MoRE
MoRE
MoRE



MATEMATIK TAMBAHAN Additional Mathematics



CIRI-CIRI HEBAT


STUDI 1 MINIT PRAKTIS SPM & EKSTRA KLU SOALAN i-THINK/KBAT

Fakta penting bagi setiap bab Latihan berorientasikan SPM Tip membantu menjawab Penerapan soalan-soalan
yang telah diringkaskan untuk disediakan di akhir setiap bab soalan-soalan Kertas 2 di berformat i-THINK dan
mempercepat ulang kaji. dan juga di dalam kod QR. bahagian Praktis SPM. berbentuk aras tinggi.
Kod
QR

LEMBARAN PBD DWIBAHASA JAWAPAN LENGKAP

Lembaran kerja PBD Meningkatkan pemahaman Jawapan boleh disemak terus
tambahan yang meliputi teks melalui penggunaan di belakang setiap bab atau di
semua bab disediakan bahasa Melayu dan bahasa halaman Kandungan melalui
dalam kod QR. Kod Inggeris. kod QR. Kod
QR QR



Eksklusif
Judul dalam Siri Module & More Cara Mengakses POT Eksklusif
(Portal Ujian Soalan Objektif)
Subjek/Tingkatan 4 5
Biologi Biology 1 Imbas kod QR atau layari link bagi POT PELANGI
untuk Create new account. ONLINE TEST
Fizik Physics
2 Semak e-mel untuk mengaktifkan akaun.
Kimia Chemistry
Matematik Mathematics 3 Log in ke akaun anda.
Matematik Tambahan 4 Masukkan Enrolment Key yang boleh dijumpai di
Additional Mathematics halaman akhir setiap bab buku.
Sejarah 5 Mulakan ujian!















RC185133S



PELANGI


Click to View FlipBook Version