The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by PENERBITAN PELANGI SDN BHD, 2021-04-20 04:27:32

Praktis Hebat 2021 - Additional Mathematics F4

Format: 190mm X 260mm Binding Saddle Stitch 3imp_CRC
Praktis Form FC064131 Practice Makes Perfect!
Praktis

Practice Makes Perfect!
4
Additional

Mathematics Praktis

SPM Matematik Tambahan Praktis





TITLES IN FORM Praktis Hebat! SPM is a series of topical practices based
THIS SERIES 4 5 on the latest KSSM syllabus and the latest SPM exam
Bahasa Melayu format. The exam-oriented questions aim to help students Praktis HEBAT! SPM KSSM
develop their mastery of concepts taught, as well as
English
familiarise them with the format of school assessments
Mathematics/Matematik
and the SPM examination. With the incorporation of
Additional Mathematics/ Higher Order Thinking Skills (HOTS) questions and
Matematik Tambahan
practices, students would be better prepared to ace
Science/Sains
the examination with confidence. Complete answers are also
Physics/Fizik provided for all questions.
Chemistry/Kimia
Biology/Biologi FORMAT PEPERIKSAAN
SPM MULAI 2021 Matematik Tambahan (3472)
Sejarah
PERKARA KERTAS 1 KERTAS 2
Pendidikan Islam
Form
Ekonomi
Perniagaan Additional Mathematics/Matematik Tambahan
Prinsip Perakaunan

© Penerbitan Pelangi Sdn. Bhd. 2021 4 Additional
All rights reserved. No part of this book may be
reproduced, stored in a retrieval system, or
transmitted in any form or by any means,
electronic, photocopying, mechanical, recording Mathematics
or otherwise, without the prior permission of
Penerbitan Pelangi Sdn. Bhd.
First Published 2021 Matematik Tambahan
SPM




FORM 4
KSSM Intensive Topical Practices


SPM-Oriented Questions

HOTS Practices

W.M: RM7.35 / E.M: RM7.65
Lot 8, Jalan P10/10, Kawasan Perusahaan Bangi, W.M: RM??.?? / E.M: RM??.?? Complete Answers
Bandar Baru Bangi, 43650 Bangi, Selangor Darul Ehsan, Malaysia. FC064131
Tel: 03-8922 3993 Fax: 03-8926 1223 / 8920 2366 E-mail: [email protected] ISBN: 978-967-2965-46-6 Tan Soon Chen
Enquiry: [email protected]
Format Pentaksiran SPM 2021
Printed in Malaysia by The Commercial Press Sdn. Bhd. Based on the Latest
Lot 8, Jalan P10/10, Kawasan Perusahaan Bangi, Bandar Baru Bangi, 43650 Bangi, Selangor Darul Ehsan, Malaysia.
Please log on to www.ePelangi.com/errata for up-to-date adjustments to the contents of the book (where applicable)



CVR_PraktisHebat_2021_AddMaths_F4&5.indd 1-2 4/8/21 4:40 PM

CONTENTS







Functions 1
PRACTICE
1 Fungsi
HOTS Practices

Quadratic Functions 8
PRACTICE
2 Fungsi Kuadratik
HOTS Practices


Systems of Equations 18
PRACTICE
3 Sistem Persamaan
HOTS Practices

Indices, Surds and Logarithms 21
PRACTICE
4 Indeks, Surd dan Logaritma
HOTS Practices

Progressions 28
PRACTICE
5 Janjang
HOTS Practices

Linear Law 38
PRACTICE
6 Hukum Linear
HOTS Practices

Coordinate Geometry 50
PRACTICE
7 Geometri Koordinat
HOTS Practices

Vectors 61
PRACTICE
8 Vektor
HOTS Practices

Solution of Triangles 72
PRACTICE
9 Penyelesaian Segi Tiga
HOTS Practices

Index Numbers 79
PRACTICE
10 Nombor Indeks
HOTS Practices


Assessment Paper –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 92

Answers ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– A1 – A16










CONTENT HEBAT ADD MATH F4 1P.indd 1 09/04/2021 5:25 PM

Additional Mathematics Form 4 Practice 1 Functions
PRACTICE Functions
1 Fungsi





FORMULAE

–1
1. fg(x) = f[g(x)] 2. If f(x) = y then f (y) = x
Jika f(x) = y maka f (y) = x
–1
PAPER 1

Berdasarkan ujian yang dinyatakan di (a),
1.1 Functions TEXTBOOK tentukan sama ada graf ini adalah fungsi
Fungsi pg. 2 – 11
dan berikan satu sebab.
[3 marks / markah]
1. The diagram below shows the arrow diagram
that maps an element in set P to another 3.
element in set Q. PL 2 f
Rajah di bawah menunjukkan gambar rajah
anak panah yang memetakan satu unsur dalam –1 –1
set P kepada unsur lain dalam set Q. 0 0
P Q 1 1
2 8
1 1
3 27 Based on the diagram above, write the
relationship for function f using function
4 64
notation. PL 3
Berdasarkan rajah di atas, tulis hubungan bagi
Is the relationship above a function? Give one fungsi f menggunakan tatanda fungsi.
reason. [2 marks / markah]
Adakah hubungan di atas ialah suatu fungsi?
Berikan satu sebab. 4. Determine the domain, codomain and range for
[2 marks / markah]
each of the following function g. PL 3
Tentukan domain, kodomain dan julat bagi
2. The diagram below shows a graph. PL 3 setiap fungsi g yang berikut.
Rajah di bawah menunjukkan suatu graf.
(a) g
y x y
1
a
2
b
5
x c
0 7
d
8
(a) State a test can be used to determine
whether this graph is a function. (b) f(x)
Nyatakan satu ujian yang boleh 5
digunakan untuk menentukan sama ada 4
graf ini adalah fungsi. 3
(b) Based on the test stated in (a), determine 2 1
whether this graph is a function and give x
one reason. –1 0 1 2 [4 marks / markah]


1 © Penerbitan Pelangi Sdn. Bhd.






01 HEBAT ADD MATH F4 1P.indd 1 09/04/2021 5:28 PM

Additional Mathematics Form 4 Practice 1 Functions
5. The function f is defined by f : x → 2x – 9. 11. Determine the corresponding range of f for the
2
Find PL 3 domain given. PL 3
Fungsi f ditakrifkan oleh f : x → 2x – 9. Cari Tentukan julat nilai f yang sepadan untuk
2
(a) f(3) domain yang diberikan.
(b) f(–1) (a) f : x → |x – 1|, –1 < x < 7
(c) the value of x when f(x) = 3x (b) f : x → |3x – 2|, –2 < x < 5
nilai x apabila f(x) = 3x [2 marks / markah]
[3 marks / markah]
12. Sketch the graph f based on the domain given.
6. Find image for the object given. PL 3 Lakarkan graf f berdasarkan domain yang
Cari imej bagi objek yang diberikan. diberikan. PL 3
(a) f(x) = 5 – 6x, x = 2 (a) f : x → |2x – 3|, –3 < x < 3
x (b) f : x → |5x – 5|, –2 < x < 3
(b) f(x) = 4 + 7, x = –8
[2 marks / markah] [4 marks / markah]
13. Find the values of x for each of the following
7. Find object for the image given. PL 3
Cari objek bagi imej yang diberikan. based on the value of f(x) given. PL 4
Cari nilai-nilai x bagi setiap yang berikut
(a) f(x) = 4x – 1 [Image/Imej = 11] berdasarkan nilai f(x) yang diberikan.
(b) f(x) = x – 6 [Image/Imej = x] (a) f : x → |6x + 1|, f(x) = 7
2
[2 marks / markah]
(b) f : x → |5x – 3|, f(x) = 2
8. Given the function f(x) = 3x – 8. Find PL 3 [2 marks / markah]
Diberi fungsi f(x) = 3x – 8. Cari 14. Find the values of x for each of the following
(a) f(–1) when mapping onto itself. PL 4
(b) the value of x when its image is 4x. Cari nilai-nilai x bagi setiap yang berikut
nilai x apabila imejnya ialah 4x. apabila memetakan kepada diri sendiri.
[2 marks / markah] (a) f : x → |4x – 3|
(b) f : x → |5x + 4|
9. Given the function f(x) = px + 3. PL 3
Diberi fungsi f(x) = px + 3. [2 marks / markah]
(a) Find the value of p if f(–2) = – 3. 15. A ball is thrown to the air. The path passed
Cari nilai p apabila f(–2) = – 3. through by the ball is represented by the
(b) Using the value of p in (a), find the value function h(t)= 64t – 8t , such that h is the
2
of x if f(x) = 0. height, in metres and t is the time, in seconds.
Menggunakan nilai p di (a), cari nilai x Sebiji bola dibaling ke udara. Laluan yang
apabila f(x) = 0. dilalui oleh bola itu diwakili oleh fungsi
2
[3 marks / markah] h(t)= 64t – 8t , dengan keadaan h ialah
ketinggian, dalam meter dan t ialah masa,
2
10. Given the function f : x → 4x + 10x. Find PL 4 dalam saat.
Diberi fungsi f : x → 4x + 10x. Cari (a) State the height reached by the ball when
2
(a) f (–1) Nyatakan ketinggian yang dicapai oleh
(b) the values of x which map onto itself by bola itu apabila PL 5
f(x). (i) t = 3
nilai-nilai x yang memetakan kepada diri (ii) t = 6
sendiri oleh f(x). (b) When the ball will reach the ground?
[2 marks / markah]
Bilakah bola itu akan mencecah
permukaan tanah?
[4 marks / markah]




© Penerbitan Pelangi Sdn. Bhd. 2






01 HEBAT ADD MATH F4 1P.indd 2 09/04/2021 5:28 PM

Additional Mathematics Form 4 Practice 1 Functions
(a) f(x) = 4x – 3, fg(x) = 20x – 3
1.2 Composite Functions TEXTBOOK (b) f(x) = 7x + 1, fg(x) = 7x + 1
2
Fungsi Gubahan pg. 12 –19
[4 marks / markah]
16. Function f and function g are defined by f : x 22. Find function g based on the function f and
→ 2x – 3 and g : x → 4x – 1 respectively. Find composite function gf given. PL 3
the expression for PL 3 Cari fungsi g berdasarkan fungsi f and fungsi
Fungsi f dan fungsi g adalah masing-masing gubahan gf yang diberikan.
ditakrifkan oleh f : x → 2x – 3 dan g : x → 4x (a) f(x) = 2x, gf(x) = 18x – 2
– 1. Cari ungkapan bagi (b) f(x) = 4x, gf(x) = 16x – 1
2
(a) fg [4 marks / markah]
(b) gf
[4 marks / markah] 23. Given f(x) = 5x – 3 and fg(x) = 17 – 5x, find
PL 4
17. Given that f : x → 4x + 1 and g : x → 2x – 7. Diberi f(x) = 5x – 3 dan fg(x) = 17 – 5x, cari
Find the expression for PL 3 (a) g(x)
Diberi f : x → 4x + 1 dan g : x → 2x – 7. Cari (b) g(–3)
ungkapan bagi (c) the value of x when f(x) = g(x)
(a) f 2 nilai x apabila f(x) = g(x).
(b) g 2 [4 marks / markah]
[4 marks / markah]
24. Given that g(x) = 7x – 2 and fg(x) = 7 x. Find
18. Given that f : x → px + q and f : x → 25x – 6 2
2
such that p and q are constants. Find the value Diberi bahawa g(x) = 7x – 2 and fg(x) = 7 x.
of both constants. PL 3 Cari PL 4 2
Diberi f : x → px + q dan f : x → 25x – 6 (a) f(x)
2
dengan keadaan p dan q ialah pemalar. Cari (b) the value of x when f(x) = fg(x).
nilai bagi kedua-dua pemalar tersebut. nilai x apabila f(x) = fg(x).
[3 marks / markah] [3 marks / markah]

19. Two functions g and h are defined by g : x → 25. Given that h(x) = mx + n, m . 0 and h (x) =
2
3x + 5 and h : x → 5x – 2. Find the value of x 25x + 12. Find the value of m and n. PL 4
when PL 4 Diberi bahawa h(x) = mx + n, m . 0 dan h (x)
2
Dua fungsi g dan h ditakrifkan oleh g : x → 3x = 25x + 12. Cari nilai m dan n.
+ 5 dan h : x → 5x – 2. Cari nilai x apabila [4 marks / markah]
(a) gh(x) = g(x)
(b) g (x) = h (x) 26. Given that f(x) = x + 8, g(x) = 8 – 3x and gf(x)
2
2
2
[4 marks / markah] = (p – 1) x – q . Find PL 4
Diberi bahawa f(x) = x + 8, g(x) = 8 – 3x dan
2
20. Given g(x) = 2 – x and h(x) = 5x – 1. Find gf(x) = (p – 1) x – q . Cari
3
the value of x if gh(x) = g(x). PL 4 (a) the value of p.

nilai p.
Diberi g(x) = 2 – 3 x dan h(x) = 5x – 1. Cari (b) the possible values of q.
nilai x apabila gh(x) = g(x). nilai-nilai q yang mungkin.
[3 marks / markah] [4 marks / markah]
21. Find function g based on the function f and 27. Given the function h(x) = px + q and h (x) =
2
composite function fg given. PL 3 9x – 4. Find the possible values of p and q.
Cari fungsi g berdasarkan fungsi f dan fungsi Diberi fungsi h(x) = px + q dan h (x) = 9x – 4.
2
gubahan fg yang diberikan. Cari nilai-nilai p dan q yang mungkin. PL 3
[3 marks / markah]


3 © Penerbitan Pelangi Sdn. Bhd.






01 HEBAT ADD MATH F4 1P.indd 3 09/04/2021 5:28 PM

Additional Mathematics Form 4 Practice 1 Functions
28. Function f is defined by f : x → 2x – 3. Find (a) f
the function g if PL 3 x y
Fungsi f ditakrifkan oleh f : x → 2x – 3. Cari 1 –5
fungsi g jika 2 –3
(a) fg : x → 5x – 1 3 –1
2
(b) gf : x → 5x – 1 4 1
2
[4 marks / markah] 5 3
7 (b) f : x → 9 – x 2
29. Given the function h(x) = x , x ≠ 0 and gh(x) [4 marks / markah]
= 14 + x . Find PL 4
x
Diberi fungsi h(x) = 7 , x ≠ 0 dan gh(x) = 32. Verify the truth that each of the following
14 + x . Cari x function f(x) has the inverse function g(x).
x
PL 3
(a) g(x) Sahkan kebenaran bahawa setiap fungsi f(x)
(b) the possible values of x when hg(x) = yang berikut mempunyai fungsi songsang g(x).
gh(x) – 14 x + 4
3
nilai-nilai yang mungkin bagi x apabila (a) f(x) = 2x – 4, g(x) = 2
x
hg(x) = gh(x) – 14 (b) f(x) = + 2, g(x) = 3x – 6
3
3
[4 marks / markah] [4 marks / markah]
33. Find the inverse function for each of the
1.3 Inverse Functions TEXTBOOK following function. PL 3
Cari fungsi songsang bagi setiap fungsi yang
Fungsi Songsang pg. 20 –29
berikut.
30. In the arrow diagram below, the function f (a) f(x) = 7x – 2
maps x onto y. PL 3 (a) f(x) = 3x + 11
Dalam gambar rajah anak panah di bawah, [4 marks / markah]
fungsi f memetakan x kepada y.
34. Find the inverse function for each function
f
x y given. PL 3
Cari fungsi songsang bagi setiap fungsi yang
1 2 diberikan.
x
2 5 (a) f(x) = + 1
5
4
3 10 (b) f(x) = x + 2 , x ≠ – 2
[4 marks / markah]
Determine the value of 35. Find the inverse function for the function
Tentukan nilai bagi x – 1
(a) f (2) f(x) = x + 1 , x ≠ –1. Hence, find the value of
–1
–1
(b) f (5) f (–4). PL 3
–1
(c) f (10) Cari fungsi songsang bagi fungsi f(x) = x – 1 ,
–1
x + 1
[ 3 marks / markah] x ≠ –1. Seterusnya, cari nilai bagi f (–4).
–1
31. Determine whether each of the following [3 marks / markah]
function f has the inverse function. Give your 36. Find the function f(x) for each of the following
reason. PL 2
Tentukan sama ada setiap fungsi f yang berikut inverse function. PL 3
Cari fungsi f(x) bagi setiap fungsi songsang
mempunyai fungsi songsangan. Berikan sebab yang berikut.
anda. x – 1
(a) f (x) =
–1
2

© Penerbitan Pelangi Sdn. Bhd. 4






01 HEBAT ADD MATH F4 1P.indd 4 09/04/2021 5:28 PM

Additional Mathematics Form 4 Practice 1 Functions

(b) f (x) = 2x + 5 39. Given that f : x → x – 8 , x ≠ 4. Find PL 3
–1
–1
3 x – 4
[4 marks / markah] x – 8
Diberi bahawa f : x → x – 4 , x ≠ 4. Cari
–1
37. Given the inverse function f is defined by (a) f(3)
–1
f : x → 2 – x . Find PL 3 (b) the possible values of m such that
–1
5
m
–1
Diberi fungsi songsang f ditakrifkan oleh f (m) = 24 .
–1
f : x → 2 – x . Cari nilai-nilai yang mungkin bagi m dengan
–1
5
(a) f(x) keadaan f (m) = m .
–1
(b) the value of x such that f(x) = –2 24 [4 marks / markah]
nilai x dengan keadaan f(x) = –2
[4 marks / markah] 40. Function f and g are defined by f : x → 3x – 5
and g : x → 7 , x ≠ 4 . Solve the
38. Solve each of the following such that 4 – 3x 3
–1
–1
–1
h(x) = h (x). PL 3 equation f (x) = x[g (x)]. PL 4
Selesaikan setiap yang berikut dengan keadaan Fungsi f dan g ditakrifkan oleh f : x → 3x – 5
h(x) = h (x). dan g : x → 7 , x ≠ 4 . Selesaikan
–1
(a) h : x → 3x – 6 4 – 3x 3
–1
–1
(b) h : x → 7x + 1 persamaan f (x) = x[g (x)].
[4 marks / markah] [5 marks / markah]
PAPER 2
1. The function f is defined by f : x → |3x - 4|. PL3 Subtopic 1.1
Fungsi f ditakrifkan oleh f : x → |3x - 4|.
TEXTBOOK
pg. 2 – 19
(a) Sketch the graph of f for the domain –2 < x < 3.
Lakarkan graf bagi f untuk domain –2 < x < 3. [3 marks / markah]
(b) State the corresponding range of f for the domain.
Nyatakan julat f yang sepadan untuk domain tersebut. [2 marks / markah]
(c) Solve the equation f(x) = 11.
Selesaikan persamaan f (x) = 11. [2 marks / markah]
2. The function g is defined by g : x → 5x + 4 , x ≠ 0. Find PL3 Subtopic 1.1

x
TEXTBOOK 4

pg. 2 – 11 Fungsi g ditakrifkan oleh g : x → 5x + x , x ≠ 0. Cari
(a) g(–4) [2 marks / markah]
(b) the image for –2 under g.
imej bagi –2 di bawah g. [2 marks / markah]
(c) the possible values of x when its image is 12.
nilai-nilai x yang mungkin apabila imejnya ialah 12. [2 marks / markah]

3. The function h is defined by h : x → px – q. Given that h(–3) = –13 and h(2) = –3. Find PL3 Subtopic 1.1
Fungsi h ditakrifkan oleh h : x → px – q. Diberi bahawa h(–3) = –13 dan h(2) = –3. Cari
TEXTBOOK
pg. 2 – 11
(a) the value of p and q.
nilai p dan q. [4 marks / markah]
(b) the image for 5 under h.
imej bagi 5 di bawah h. [2 marks / markah]
(c) the value of x which maps onto itself.
nilai x yang memetakan kepada diri sendiri. [2 marks / markah]


5 © Penerbitan Pelangi Sdn. Bhd.






01 HEBAT ADD MATH F4 1P.indd 5 09/04/2021 5:28 PM

Additional Mathematics Form 4 Practice 1 Functions
2
4. Two functions are defined by f : x → 4x and g : x → 3x – x + 20. PL4 Subtopic 1.2
2
TEXTBOOK Dua fungsi ditakrifkan oleh f : x → 4x dan g : x → 3x – x + 20.
pg. 12 – 19
(a) Find the composite function fg(x) and gf(x). Is fg(x) equal to gf(x)?
Cari fungsi gubahan fg(x) dan gf(x). Adakah fg(x) sama dengan gf(x)? [4 marks / markah]
(b) Find the possible values of x to satisfy the equation f (x) = g(x).
2
Cari nilai-nilai x yang mungkin untuk memuaskan persamaan f (x) = g(x). [3 marks / markah]
2
1
5. The function g and h are defined by g: x → x – 1 , x ≠ 1 and h : x → 2x + 3 respectively. PL4 Subtopic 1.2

TEXTBOOK Fungsi g dan h masing-masing ditakrifkan oleh g : x → 1 , x ≠ 1 dan h : x → 2x + 3.

pg. 12 – 19 x – 1
(a) Find the expression for gh(x), hg(x) g (x) and h (x).
2
2
Cari ungkapan bagi gh(x), hg(x) g (x) dan h (x). [8 marks / markah]
2
2
(b) Find the value of x when gh(x) = hg(x) – 31 .
8
31
Cari nilai x apabila gh(x) = hg(x) – 8 . [2 marks / markah]
6. Given that the inverse function g (x) = x – 4 . PL4 Subtopic 1.3
–1
TEXTBOOK Diberi fungsi songsang g (x) = x – 4 . 11
–1
pg. 20 – 29 11
(a) Find the function g(x).
Cari fungsi g(x). [2 marks / markah]
(b) Solve the following equations.
Selesaikan persamaan yang berikut.
(i) g(x) = g (x) (ii) g(x) = gg (x) [4 marks / markah]
–1
–1
kx – 9 mx + n
–1
7. Given that f : x → x + 4 , x ≠ –4 and f : x → 5 – x , x ≠ 5. PL4 Subtopic 1.3
TEXTBOOK
pg. 20 – 29 Diberi bahawa f : x → kx – 9 , x ≠ –4 dan f : x → mx + n , x ≠ 5.
–1
x + 4 5 – x
(a) Find the values of k, m and n.
Cari nilai k, m dan n. [3 marks / markah]
(b) Find the value of x when f(x) + 11 = f (x).
–1
2
Cari nilai x apabila f(x) + 11 = f (x). [2 marks / markah]
–1
2
(c) Determine whether ff (x) = x. Hence, determine whether each equation given is true or false. Give
–1
your reason.
Tentukan sama ada ff (x) = x. Seterusnya, tentukan sama ada setiap persamaan yang diberikan
–1
adalah benar atau palsu. Berikan alasan anda.
(i) ff (–2) = –2 (ii) ff (3) = –3 [5 marks / markah]
–1
–1
8. Given that f : x → 3x – 7 and g : x → 10 – 9x. PL3 Subtopic 1.1 & 1.2
TEXTBOOK Diberi bahawa f : x → 3x – 7 dan g : x → 10 – 9x.
pg. 2 – 19
(a) Find / Cari
(i) f (–3) [2 marks / markah]
(ii) the value of m if f(m – 4) = 1 f(–3)
4
nilai m jika f(m – 4) = 1 f(–3) [2 marks / markah]
4
(iii) gf(x) [3 marks / markah]
(b) Hence, sketch the graph of y = |gf(x)| for –2 < x < 4. State the range of y.
Seterusnya, lakar graf y = |gf(x)| untuk –2 < x < 4. Nyatakan julat y. [3 marks / markah]




© Penerbitan Pelangi Sdn. Bhd. 6






01 HEBAT ADD MATH F4 1P.indd 6 09/04/2021 5:28 PM

Additional Mathematics Form 4 Practice 1 Functions
9. Given that f(x) = 7x – 1 and gf(x) = 14x + 1. Find PL3 Subtopic 1.2 & 1.3
Diberi bahawa f(x) = 7x – 1 dan gf(x) = 14x + 1. Cari
TEXTBOOK
pg. 12 – 19 (a) gf(x) [3 marks / markah]
(b) g f(x) [4 marks / markah]
–1
(c) the value of x when fg(x) = g f(x).
–1
nilai x apabila fg(x) = g f(x). [3 marks / markah]
–1
2
10. Function f is defined by f : x → x – 7 for the domain 0 < x < 6. PL4 Subtopic 1.3
2
TEXTBOOK Fungsi f ditakrifkan oleh f : x → x – 7 untuk domain 0 < x < 6.
pg. 20 – 29
(a) On the same plane, sketch the graph of f and f .
–1
Pada satah yang sama, lakar graf bagi f dan f . [4 marks / markah]
–1
(b) Hence, state the domain and range of f .
–1
Seterusnya, nyatakan domain dan julat bagi f . [2 marks / markah]
–1
x
(
f
(c) Find the possible values of x such that ) + 2 = f (x).
–1
f
(
Cari nilai-nilai yang mungkin bagi x dengan keadaan ) + 2 = f (x). [4 marks / markah]
x
–1
HOTS Practices
HO
HO
TS
TS
Practices
1. Diagram below shows a graph.
Rajah di bawah menunjukkan suatu graf.
y
Determine whether this graph is a function. Why?
Tentukan sama ada graf ini adalah suatu fungsi. Mengapa?
x
0


2. The function g, h, gh and hg are defined as shown below.
Fungsi g, h, gh dan hg adalah ditunjukkan seperti di bawah.
g(x) = px – 3, h(x) = (x – q) , gh(x) = px – 4px + 12q + 1
2
2
(a) Find the value of p and of q.
Cari nilai p dan nilai q.
2 2
(b) Using the value of p and q obtained in (a), find the expression for hg(x) if hg(x) = p x – 35qx + 4p
– 3.
Menggunakan nilai p dan q yang diperoleh di (a), cari ungkapan bagi hg(x) jika hg(x) = p x – 35qx
2 2
+ 4p – 3
(c) Find the possible values of x when gh(x) = hg(x).
Cari nilai-nilai yang mungkin bagi x apabila gh(x) = hg(x).
(d) Find the value of x when g (x) = g (x)
2
–1
Cari nilai x apabila g (x) = g (x)
–1
2





7 © Penerbitan Pelangi Sdn. Bhd.






01 HEBAT ADD MATH F4 1P.indd 7 09/04/2021 5:28 PM

Additional Mathematics Form 4 Answers
ANSWERS






f(x)
PRACTICE Functions 16
1 Fungsi 14
12
10
PAPER 1
8
1. (a) The relation is a function because each object 6
has only one image. 4
Hubungan ini ialah fungsi kerana setiap objek 2
mempunyai satu imej sahaja. x
2. (a) Vertical line test –2 –1 0 1 2 3
Ujian garis mencancang 4 1
(b) This graph is not a function because when tested 13. (a) x = 1, x = – — (b) x = 1, x = —
5
3
with the vertical line test, the line cuts two points
3
2
on the graph. 14. (a) x = 1, x = — (b) x = –1, x = – —
Graf ini bukan fungsi kerana apabila diuji dengan 5 3
ujian garis mencancang, garis itu memotong dua
titik pada graf. 15. (a) (i) h(3)= 120 (ii) h(6)= 96
3. f : x → x 3 (b) (t = 0, t = 8)
4. (a) Domain = {a, b, c, d} 16. (a) fg(x) = 8x – 5 (b) gf(x) = 8x – 13
Codomain / Kodomain = {1, 2, 5, 7, 8} 17. (a) f (x) = 16x + 5 (b) g (x) = 4x – 21
2
2
Range / Julat = {1, 5, 7, 8} 18. p = 5, q = –1
(b) Domain = {–1, 0, 1, 2} 1
Codomain / Kodomain = {0, 1, 2, 3, 4, 5} 19. (a) x = — (b) x = 32
2
1
Range / Julat = {0,1,2,3,4} 20. x = —
5. (a) f(3) = 9 4
(b) f(–1) = –7 21. (a) g(x) = 5x (b) g(x) = x 2
3
(c) x = 3, x = – — 22. (a) 9x – 2 (b) x – 1
2
2
23. (a) g(x) = 4 – x (b) g(–3) = 7
6. (a) f(2) = –7 (b) f(–8) = 5
7
7. (a) x = 3 (b) x = 3, x = –2 (c) x = —
6
8. (a) f(–1) = –11 (b) x = –8 1 1
9. (a) p = 3 (b) x = –1 24. (a) f(x) = —x + 1 (b) x = —
2
3
9
10. (a) f(–1) = –6 (b) x = 0, x = – — 25. (m = 5, n = 2)
4
11. (a) 0 < f(x) < 6 (b) 0 < f(x) < 13 26. (a) p = –2 (b) q = 4, q = –4
12. (a) f : x → |2x – 3|, –3 < x < 3 27. p = 3, q = –1
5
2
x –3 0 1.5 3 28. (a) g(x) = —x + 1 (b) g(x) = 5x + 30x + 41
2
2 4
f(x) 9 3 0 3 7
29. (a) g(x) = 2x + 1 (b) x = 3, x = –
f(x) 30. (a) f (2) = 1 (b) f (5) = 2 11
–1
–1
10 (c) f (10) = 3
–1
9
8 31. (a) f is a function because the type of function for the
7 arrow diagram above is a one - to - one function.
6 Each element in the domain is mapped to only
5 one element in the codomain. Therefore, the
4 function f has an inverse function.
3 f ialah suatu fungsi kerana jenis fungsi bagi
2 gambar rajah anak panah di atas ialah fungsi
1 satu dengan satu. Setiap unsur dalam domain
x dipetakan kepada hanya satu unsur dalam
–3 –2 –1 0 1 2 3
kodomain. Oleh itu, fungsi f mempunyai fungsi
(b) f : x → |5x – 5|, –2 < x < 3 songsang.
(b) f is not a one - to - one function because two
x -2 0 1 3
different objects have the same image. Therefore,
f(x) 15 5 0 10 the function f has no inverse function.
A1 © Penerbitan Pelangi Sdn. Bhd.
ANS HEBAT ADD MATH F4 1P.indd 1 09/04/2021 3:49 PM

Additional Mathematics Form 4 Answers
f bukan suatu fungsi satu dengan satu kerana 5. (a) gh(x) = 1
dua objek yang berlainan mempunyai satu imej 2(x + 1)
yang sama. Oleh itu, fungsi f tidak mempunyai 3x – 1
fungsi songsang. hg(x) = x – 1
x + 4
32. (a) Since fg(x) = gf(x) = x, hence g(x) = 2 is an g (x) = – x – 1
2
inverse function fg(x) = 2x – 4. x – 2
x + 4 h (x) = 4x + 9
2
Oleh sebab fg(x) = gf(x) = x, maka g(x) =
ialah fungsi songsang bagi fg(x) = 2x – 4. 2 9
(b) Since fg(x) = gf(x) = x, hence g(x) = 3x – 6 is an (b) x = 3, x = – 7
inverse function of fg(x) = x + 2. 6. (a) g(x) = 4 + 11x
3
Oleh sebab fg(x) = gf(x) = x, maka g(x) = 3x – 6 (b) (i) x = – 11
ialah fungsi songsang bagi fg(x) = x + 2. 15
3 (ii) gg (x) = x, x = – 2
–1
x + 2 x – 11 5
33. (a) f (x) = (b) f (x) =
–1
–1
7 3 7. (a) k = 5, m = 4, n = 9
4 (b) x = 2, x = –1
–1
34. (a) f (x) = 5x – 5 (b) f (x) = – 2 –1
–1
x (c) Yes/ Ya, ff (x) = x
x + 1 3 (i) True because when / Benar kerana apabila
35. (a) f (x) = (b) f (–4) = – x = –2, ff (–2) = –2
–1
–1
–1
1 – x 5 (ii) False because when / Palsu kerana apabila
3x – 5
36. (a) f(x) = 2x + 1 (b) f(x) = x = 3, ff (3) = 3
–1
2
4 8. (a) (i) f(–3) = –16
37. (a) f(x) = –5x + 2 (b) x = (ii) m = 5
5
1 (iii) gf(x) = –27x + 73
38. (a) x = 3 (b) x = –
6 (b) 73
39. (a) f(3) = 2 (b) m = 12, m = 16 x –2 0 27 4
x + 5
40. f (x) = 3 y 127 73 0 35
–1
4x – 7
g (x) =
–1
3x y
x = 4 140
120
PAPER 2 100
1. (a) x –2 0 4 3 80
3 60
f(x) 10 4 0 5 40
20
f(x) x
–2 –1 0 1 2 3 4
12
10
8 9. (a) g(x) = 2x + 3
6 –1 7x – 4
(b) g f(x) =
4 44 2
2 (c) x = – 21
x
0
–2 –1 1 2 3 10. (a) f(x)
7 35 y = f(x)
(b) 0 < f(x) < 10 (c) x = 5, x = – 30
3 25
2. (a) g(–4) = –21 (b) g(–2) = –12 20
(c) x =2, x = 2 15
5 10
3. (a) p = 2, q = 7 5 y = f –1 (x)
(b) h(5) = 3 –10 –5 0 5 10 15 20 25 30 35 x
(c) x = 7 –5
4. (a) fg(x) = 12x – 4x + 80
2
gf(x) = 48x – 4x + 20 (b) Domain: –7 < x < 29
2
–1
fg(x) ≠ gf(x) Range / Julat: 0 < f (x) < 6
5 (c) x = 4, x = –3
(b) x = 4, x =
3
© Penerbitan Pelangi Sdn. Bhd. A2
ANS HEBAT ADD MATH F4 1P.indd 2 09/04/2021 3:50 PM

Format: 190mm X 260mm Binding Saddle Stitch 3imp_CRC
Praktis Form FC064131 Practice Makes Perfect!
Praktis

Practice Makes Perfect!
4
Additional

Mathematics Praktis

SPM Matematik Tambahan Praktis





TITLES IN FORM Praktis Hebat! SPM is a series of topical practices based
THIS SERIES 4 5 on the latest KSSM syllabus and the latest SPM exam
Bahasa Melayu format. The exam-oriented questions aim to help students Praktis HEBAT! SPM KSSM
develop their mastery of concepts taught, as well as
English
familiarise them with the format of school assessments
Mathematics/Matematik
and the SPM examination. With the incorporation of
Additional Mathematics/ Higher Order Thinking Skills (HOTS) questions and
Matematik Tambahan
practices, students would be better prepared to ace
Science/Sains
the examination with confidence. Complete answers are also
Physics/Fizik provided for all questions.
Chemistry/Kimia
Biology/Biologi FORMAT PEPERIKSAAN
SPM MULAI 2021 Matematik Tambahan (3472)
Sejarah
PERKARA KERTAS 1 KERTAS 2
Pendidikan Islam
Form
Ekonomi
Perniagaan Additional Mathematics/Matematik Tambahan
Prinsip Perakaunan

© Penerbitan Pelangi Sdn. Bhd. 2021 4 Additional
All rights reserved. No part of this book may be
reproduced, stored in a retrieval system, or
transmitted in any form or by any means,
electronic, photocopying, mechanical, recording Mathematics
or otherwise, without the prior permission of
Penerbitan Pelangi Sdn. Bhd.
First Published 2021 Matematik Tambahan
SPM




FORM 4
KSSM Intensive Topical Practices


SPM-Oriented Questions

HOTS Practices

W.M: RM7.35 / E.M: RM7.65
Lot 8, Jalan P10/10, Kawasan Perusahaan Bangi, W.M: RM??.?? / E.M: RM??.?? Complete Answers
Bandar Baru Bangi, 43650 Bangi, Selangor Darul Ehsan, Malaysia. FC064131
Tel: 03-8922 3993 Fax: 03-8926 1223 / 8920 2366 E-mail: [email protected] ISBN: 978-967-2965-46-6 Tan Soon Chen
Enquiry: [email protected]
Format Pentaksiran SPM 2021
Printed in Malaysia by The Commercial Press Sdn. Bhd. Based on the Latest
Lot 8, Jalan P10/10, Kawasan Perusahaan Bangi, Bandar Baru Bangi, 43650 Bangi, Selangor Darul Ehsan, Malaysia.
Please log on to www.ePelangi.com/errata for up-to-date adjustments to the contents of the book (where applicable)



CVR_PraktisHebat_2021_AddMaths_F4&5.indd 1-2 4/8/21 4:40 PM


Click to View FlipBook Version