Chapter 10
a x83 b t 62 c p 11 3
x5 t 8 p8
4x 7 5 3y 22 4 2t 130 5
a 4x 12 b 3y 18 c 2t 135
x3 y6 t 135
2
x 3 8*(2) y 4 5*(3) t2 7
2 * (2) 3 * (3) 5 * (5)
a x 3 16 b y 4 15 c t27
x 13 y 11 t9
2x 6 14 12x 8 32 20t 5 30
a 2x 20 b 12x 24 c 20t 35
x 10 x2 t7
4
3x 1 2x 5 6t 5 4t 3 2 y 11 y 5
a 5 1 2x 3x b 3 5 4t 6t c 5 11 y 2 y
x 6 2t 8 y6
t4
3x 2 2x 5 4w 5 2w 2 10x 2 2x 3
a 5 2 2x 3x
2 5 2w 4w 3 2 2x 10x
x 7 b 2w 7 c 8x 5
w 7 x5
2 8
a x23 x5
b x35 x2
c 2x 14 38
2x 52 x 26
4x 6 15
d 4x 21 x 21
4
e 2x 3 25
2x 22 x 11
9 4x 1 4x 1 13 2 x3
a 19 4x 4x 12 x 3
4x 8
x2
2 3x 1 3x 1 11 1 x 4
b 1 2 3x 3x 12 x 4
x 1
3 4x 5 4x 5 21 2 x 4
c 53 4x 4x 16 x 4
4x 8 x 2
2 3x 4 10 2x 3 5 4x 7
4 2 3x 3 10 2x 7 5 4x
3x 6 x 2 2x 7 x 7 4x 2 x 1
a 3x 4 15
3x 19 x 19 2 2
b 2x 3 18 c 4x 7 8
3
2 x 19 2x 15 x 15 4x 15 x 15
2 4
3
7 x 15 1 x 15
22 24
3 5x 7 8 2x 3 7 5x 3
7 3 5x 38 2x 3 7 5x
d 5x 10 x 2 2x 5 x 5 5x 4 x 4
5x 7 13 e2
5x 20 x 4 2x 3 19 5
2 x4 2x 16 x 8 f 5x 3 24
5 x8
5x 21 x 21
2 5
4 x 21
55
a x59 x4 b x 4 2 x 2 c x23 x5
d x 5 2 x 3 f 5x 4 16
g 2x 1 13 4x 3 9
e 4x 6 x 3 5x 20 x 4
2x 14 x 7
2
h 3x 6 3
3x 3 x 1
Chapter 11
a 20 x 4 ÷ 1= 80 kg
b 20 x 1 ÷ 4= 5 kg
60 x 1 ÷ 2 = 30 female spectators
30 + 60 = 90 spectators
a 6:5 = 6 $2000 $2400
5
b 400 x100 20%
2000
a (I) 3 $900 $540 (ii) 3 280 $168
5 5
b 3 100 60%
5
a 7 x 0.05m2 =0.35m2
b 4.8 x1 96 days
0.05
a Car A ; Car B ;
500 11.3 56.5 litres 500 13.4 67 litres
100 100
b Car A ; Car B ;
200 x100 1769.91km 200 100 1492.54 km
11.3 13.4
c Car A ; Car B ;
25000 11.3 2825 litres 25000 13.4 3350 litres
100 100
3350 2825 525 litres
a 6 flapjacks ; 2 tablespoons golden syrup 40g granulated sugar 100g rolled oats
50g margerine
b 24 flapjacks ; 8 tablespoons golden syrup 160g granulated sugar 400 rolled oats
200g margerine
c 30 flapjacks ;
250g margerine 10 tablespoons golden syrup 200g granulated syrup 500g rolled oats
Greg ; Dom ;
6 x $5= 30 packs $3.19 = 24 packs
Can buy from greg 6 packs more tham from Dom.
12 30 45 boxes
8
a 100 40 80 days
50
b 100 x40 16 days
250
c 100 x40 11days
350
BASIC INEQUALITY RULES The rules for solving inequal
o If A>B o If A>B WITH ONE
o Then A+/-C>B+/-C o Then A*/÷C>B*/÷C
✓ IFYOU DIVIDE BY A
▪ EXAMPLE ; ▪ EXAMPLE
▪ 8>7 so 8+2>7+2 ▪ 8>7 so 8*2>7*2 Ex:
o If A<B o If A<B
o Then A+/-C<B+/-C o Then A*/÷C<B*/÷C
▪ EXAMPLE ; ▪ EXAMPLE
▪ 5<7 so 5-2<7-2 ▪ 6<8 so 6÷2<8÷2
❑ Solution 1 ; ❑ EXAMPLES 1 ; ❑ EXAMPLE
4 − 6 ≥ −15 + 1 1. 2 < 3
o Original problem 4 − 6 ≥ −14
✓ Simplfy (-15+1=-14 4 − 4 − 6 ≥ −14 − 4 4+2
✓ Substract 4 from BOTH sides by -6.You MUST −−66 ≥−−168 3 > 6
3 − 4
REVERSE the SIGN sice you divided by a negative ≤ 3
number Check ; 2. 3 < 19
✓ Substitute a number less than or equal to 3. I choose
3. Both sides equal -14 so my answer is absolutely 4 − 6 ≥ −15 + 1 = 2 <
correct 4 − 6 3 ≥ −15 + 1
4 − 18 ≥ −14 Absolute
❑ Solution 2 ; −14 ≥ −14
o Original problem Absolutely correct
✓ Separate & simplify first & second
✓ Then change the sign and combine it
lities are the same as solving equations,
E EXCEPTION;
A NEGATIVE,THE INEQUALITY
FLIPS
−−44 >−124
F
L
I
P
< −
2;
− 4
< 3
6 = > 2
4 < 15
9 = < 19
3
19
< < 3
ely correct
RATIOS,RATES & PROPORTIONS
RATIO RATES PROPORT
o Comparison of two o A special ratio o A statement
quantities in the same comparing two are equal.
unit. quantities with different
units. o Given the pr
o The ratio of a to b can : = :
be written as a : b or o For example, a typing then by cross m
. speed of 35 words per
minute compares the ad =
o Given the ratios a : b number of words typed
and b:c, we can state with the time taken.
the ratio a : b : c.
❑ EXAMPLES a:b:c ❑ EXAMPLES equivalent ❑ Example Proportions ;
4km to 3km to 5 km ratios ;
= 4:3:5 o Fine the value of x,
4 : 7 12 : 21
❑ EXAMPLE Rate : 8: 5 = : 48
o Shankar was paid RM 32 4 :7=4 x3 :7 x3
= 12 : 21 48 × 8 = × 48
for 8 hours of work. 5 48
o Rate of payment ; ❑ Example a:b:c 5 = 30
8 3 2 = RM 4 per hour o Find the ratio a:b:c
= 6
: = 2: 3
: = 4: 5
4 × 2: 4 × 3: 5 × 3
: : = 8: 12: 15
RTIONS
t that two ratios
roportion
,
=
multiplication,
= b c.
MURDE
MAT
EROUS
THS
STRIVE FOR MATHEMATICS A+
ALL THINGS ARE
DIFFICULT
BEFORE THEY ARE
EASY
THE END