DBM 20023 – ENGINEERING MATHEMATICS 2
TABLE OF CONTENT
No. Topic Page
3.1 Explain Indefinite Integrals 3 - 14
15 – 22
3.2 Calculate Definite lntegrals 23 - 29
30 – 35
3.3 Apply lntegrals of Trigonometric 36 – 39
Function 40 – 48
49 – 63
3.4 Apply lntegrals of Reciprocal 64 – 87
Function
3.5 Solve lntegrals of Exponential
Function
3.6 Solve Integration by Parts
3.7 Solve Integration of Partial
Fraction
3.8 Apply the Techniques of
Integration
Page 1
DBM 20023 – ENGINEERING MATHEMATICS 2
3.0 INTEGRATION
Learning Outcomes:
At the end of this topic student should be able to:
Perform indefinite integrals of algebraic functions
Perform definite integrals
Perform integral of trigonometric, reciprocal and exponential
functions
Perform integration by part
Perform integration of partial fraction
Apply the techniques of integration to find area and volume
Page 2
DBM 20023 – ENGINEERING MATHEMATICS 2
Introduction
Definition: When 2 differentiated with respect to , the derivatives is 2 which
is ( 2) = 2 . Otherwise, given that the derivatives of a function is 2 , it is
clear that the function maybe 2.
If = ( ) , so = ′( ), then the integration of ∫ ′( ) = ( )
Integration is often introduced as the reverse process of differentiation.
3.1 Indefinite Integration of Algebraic
Functions
Definition: Indefinite Integrals is an integral expressed without limits, and so containing
an arbitrary constant.
Page 3
3.1.1 DBM 20023 – ENGINEERING MATHEMATICS 2
Indefinite Integration of Algebraic Functions
a) Integration of a Constant
If Then
= ∫ = +
Example: Example:
∫ 4 ∫ 9
2
∫ 4
= 4 + ∫ 9
2
= 9 +
2
Page 4
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following integrals:
a ) ∫ 0 b ) ∫ −15
[Ans: ] [Ans: −15 + ]
c ) ∫ 0.25 d ) ∫ 5
4
[Ans: 0.25 + ] [Ans: 5 + ]
4
Page 5
DBM 20023 – ENGINEERING MATHEMATICS 2
b)Integration of Algebraic Function
If Then
=
= ∫ = +1 +
+ 1
∫ = +1 +
+ 1
Example: Example:
∫ 6 ∫ 2 4
= 6+1 + 2 4+1
6+1 4+1
= +
7
= 7 + 2 5
5
= +
Page 6
DBM 20023 – ENGINEERING MATHEMATICS 2
Example: (use substitution method)
∫ 5 1 1
+
= 5 + 1
= 5 , =
5
∫ 1 1 = ∫ 1
5 + 5
= 1 ∫ 1
5
= 1 ln +
5
= 1 ln|5 + 1| +
5
Page 7
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following integrals: b ) ∫ 4 2
a ) ∫ 9 3
[Ans: 10 + ] [Ans: 4 3 + ]
10 9
c ) ∫ −3 d ) ∫ 1
√
[Ans: − 1 + ] [Ans: 2√ + ]
2 2
Page 8
DBM 20023 – ENGINEERING MATHEMATICS 2
e) ∫ 1 f) ∫ 1
(3−5 )4 5 +7
(use substitution method) (use substitution method)
[Ans: 15(3 1 5 )3 + ] [Ans: 1 ln|5 + 7| + ]
− 5
Page 9
DBM 20023 – ENGINEERING MATHEMATICS 2
c) Integration of a function involving addition and
subtraction
Addition of If Then
Integration = ( ) + ( ) ∫[ ( ) + ( )] = ∫ ( ) + ∫ ( )
= ( ) − ( ) ∫[ ( ) − ( )] = ∫ ( ) − ∫ ( )
Subtraction of
Integration
Example: Example:
∫(6 3 + 2) ∫(2 + 3)(3 − 1)
= 6 3+1 + 2 + = ∫(6 2 − 2 + 9 − 3)
3+1
= ∫(6 2 + 7 − 3)
= 6 4 + 2 + = 6 3 + 7 2 − 3 +
4 3 2
= 3 4 + 2 +
2
Page
10
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following integrals: b ) ∫(8 2 − 4 + 4)
a ) ∫( 2 + 6 − 1)
[Ans: 3 + 3 2 − + ] [Ans: 8 3 − 2 2 + 4 + ]
3 3
c ) ∫ 3 2−6 d ) ∫ (4 − 2)
3
[Ans: 3 − 2 + ] [Ans: 2 2 − 4 + ]
3 4
Page
11
DBM 20023 – ENGINEERING MATHEMATICS 2
d)Integration of Extended Power Rule
If Then
= ( + )
∫( + ) = ( + ) +1 +
( + 1)( )
Where and are constant and is an integer.
Example: Example:
∫(2 − 3)5 ∫(6 + 1)−2
= (2 − 3)5+1 + = (6 + 1)−2+1 +
(5 + 1)(2) (−2 + 1)(6)
(2 − 3)6 = (6 + 1)−1 +
12 −6
= +
= − 1 1) +
6(6 +
Page
12
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following integrals: b ) ∫ 3(5 + 3)2
a ) ∫( + 2)3
[Ans: ( + 2)4 + ] [Ans: (5 +3)3 + ]
4 5
∫ −2 d ) ∫
(1+3 )2 (3 +5)4
c )
[Ans: 3(1 2 3 ) + ]
+ 9(3 +5)3
[Ans: − + ]
Page
13
e ) ∫(2 − )7 DBM 20023 – ENGINEERING MATHEMATICS 2
f ) ∫(3 − 6 )−4
[Ans: − (2 − )8 + ]
8
[Ans: 1 + ]
18(3 − 6 )3
g ) ∫(1 − )−21 h ) ∫ 8(3 − 2)3
[Ans: −2√(1 − ) + ] [Ans: 2(3 − 2)4 + ]
3
Page
14
DBM 20023 – ENGINEERING MATHEMATICS 2
3.2 Definite lntegrals
Learning Outcomes:
At the end of this topic student should be able to:
Solve definite integrals
3.2.1 Definition
Definition: A Definite Integrals has start and end values; in other words there is an
interval ( to ).
I f ∫ ( ) = ( ) + , T h e n :
∫ ( ) = ( ) − ( )
Page
15
DBM 20023 – ENGINEERING MATHEMATICS 2
3.2.2 Properties of Definite Integral
a. ∫ ( ) = − ∫ ( )
b. ∫ ( ) = ∫ ( ) where is a constant
c. ∫ ( ) + ∫ ( ) = ∫ ( )
d. ∫[ ( ) + ( )] = ∫ ( ) + ∫ ( )
Example: Example:
∫02( + 4)2 ∫12( 4 + 5 )
= [( +34)3] 2 = [ 55 + 5 2 ] 2
0 2 1
= ((2+34)3) − ((0+34)3) = [((25)5 + 5(22)2) − ((15)5 + 5(21)2)]
= 72 − 64 = 82 − 27
3 5 10
= 152 = 137
3 10
Page
16
DBM 20023 – ENGINEERING MATHEMATICS 2
Example:
∫13( + 9)2 ( u s e s u b s t i t u t i o n m e t h o d )
= + 9
= 1 , =
Write the limit on using the substitution
= + 9 when:
= 1 , = 1 + 9 = 10 (lower limit)
= 3 , = 3 + 9 = 12 (upper limit)
So, we required:
12 [ 3 3]1102
∫ 2 =
10
= 1 [123 − 103]
3
= 782
3
Page
17
DBM 20023 – ENGINEERING MATHEMATICS 2
Example:
G i v e n t h a t ∫24 ( ) = 3, f i n d :
a ) ∫24 5 ( )
b ) ∫24 [7 ( ) − 1]
a ) ∫24 5 ( ) b ) ∫24 [7 ( ) − 1]
= 5 ∫24 ( )
= 5(3) = 7 ∫24 ( ) − ∫24 1
= 15
= 7(3) − [ ] 4
2
= 21 − (4 − 2)
= 19
Example:
Given that ∫12 ( ) = 3 ∫23 ( ) = 9 , find the following:
2 2
a ) ∫13 ( )
b ) ∫21 ( ) − ∫23 ( )
Page
18
DBM 20023 – ENGINEERING MATHEMATICS 2
a ) ∫13 ( ) b ) ∫21 ( ) − ∫23 ( )
= ∫12 ( ) + ∫23 ( ) = − ∫12 ( ) − ∫23 ( )
= 3 + 9 = − 3 − 9
2 2 2 2
=6 = −6
EXERCISE: b ) ∫12(3 2 + 4 − 2 )
Find the following integrals:
a ) ∫23(2 2 − 3 )
[Ans: 361] [Ans: 11]
Page
19
DBM 20023 – ENGINEERING MATHEMATICS 2
c ) ∫−11(2 + 3 ) d ) ∫01
(5 +1)3
[Ans: 6] [Ans: 772]
[Ans: −5]
e ) G i v e n t h a t ∫02 ( ) = −3. F i n d t h e f o l l o w i n g :
i) i) ∫02 3 ( ) i i ) i i ) ∫02 [3 ( ) + 2 ]
4
iii)
iv)
v)
vi)
vii)
viii)
ix)
[Ans: −49]
Page
20
DBM 20023 – ENGINEERING MATHEMATICS 2
x ) f ) F i n d t h e v a l u e o f t h e f o l l o w i n g i f ∫−12 ( ) = −1 and ∫23 ( ) = 5
i ) 2 [∫23 ( ) − ∫−12 ( ) ] xi) i i ) 6 ∫−12 ( ) + ∫23 ( )
[Ans: 12] [Ans: −1]
Page
21
DBM 20023 – ENGINEERING MATHEMATICS 2
iii) ∫01 2 xii) i v ) ∫13( + 13)3
(2 +5)
(use substitution method) (use substitution method)
[Ans: 0.336] [Ans: 6780]
Page
22
DBM 20023 – ENGINEERING MATHEMATICS 2
3.3 lntegrals of Trigonometric Function
Learning Outcomes:
At the end of this topic student should be able to:
Solve integrals of Trigonometric functions
Integration of Trigonometric functions can be simplified as
below:
∫ = − +
∫ = +
∫ = +
∫ = − +
∫ = +
∫ = − +
∫
∫ = − +
∫
= +
= +
Page
23
Example: DBM 20023 – ENGINEERING MATHEMATICS 2
∫ 2 sin Example:
= 2 ∫ sin ∫ 8 2 (1 − 4 )
= 2 (−cos ) +
= −2 cos + = 8 ∫ 2 (1 − 4 )
= 8 [tan(−14−4 )] +
= −2 tan(1 − 4 ) +
Example: Example:
∫ cos (7 + 12)
6 (use substitution method)
∫ cos 3
0
= 7 + 12
= [sin33 ]0 6 = 7 , =
7
= 1 [sin ∫ cos(7 + 12) = ∫ cos ∙
3 7
3 ]06
1
= 1 [sin 3 ( 6 ) − sin 0] = 7 ∫ cos
3
1
= 1 [1 − 0] = 7 [sin ]+
3
1
= 1 = 7 sin[7 + 12] +
3
Page
24
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following integrals:
a) ∫ [4 cos 2 + 9 sin 1 ] b ) ∫[1 + cos 9 ]
3
1 : + sin 9 +
3 9
: 2 sin 2 − 27 cos +
Page
25
DBM 20023 – ENGINEERING MATHEMATICS 2
c ) ∫ sin (73 ) d) ∫ 2 3
5
: −3 cos (73 ) + : 1 tan 3 +
7 15
Page
26
DBM 20023 – ENGINEERING MATHEMATICS 2
i ) ∫02 [1 + sin ]
j ) ∫04 [ 2 ]
: +1 : 1
2
Page
27
DBM 20023 – ENGINEERING MATHEMATICS 2
k ) ∫ 3 cot(5 ) l ) ∫ 5
(use substitution method) (use substitution method)
: 3 ln |sin 5 | + : 1 6 +
5 6
Page
28
DBM 20023 – ENGINEERING MATHEMATICS 2
m ) ∫ sin(3 + 7) n) ∫0 ⁄2 cos(1 − )
(use substitution method)
(use substitution method)
[Ans: −cos(3 +7) + ] : 1.382
3
Page
29
DBM 20023 – ENGINEERING MATHEMATICS 2
3.4 lntegrals of Reciprocal Function
Learning Outcomes:
At the end of this topic student should be able to:
Perform integrals of Reciprocal functions by using formulae and
substitution method.
Integration of Reciprocal functions.
Reciprocal Function Integration
= ∫ = | | +
= ∫ = 1 | | +
= ∫ = | | +
= ∫ 1 = 1 | + | +
+ +
= ′( ) ∫ ′( ) = | ( )| +
( ) ( )
Page
30
DBM 20023 – ENGINEERING MATHEMATICS 2
Example: Example:
∫ ∫
∫
∫ = ∫
= | | + = | | +
Example: Example:
∫ ∫ 6 + 1
+ 3 2 +
( ) = 3 2 +
′( ) = 6 + 1
∫ ∫ 6 +1
+ 3 2+
= | + | + = ∫ ′( )
( )
= ln| ( )| +
= ln|3 2 + | +
Page
31
DBM 20023 – ENGINEERING MATHEMATICS 2
Example: Example:
∫ + 2 x dx
+
1 1 4x2
(use substitution u 1 4x2
method) du 8x
dx
u 3x2 x dx du
du 6x 1 8x
dx
dx du 2 x du
6x 1 1 u 8x
6x 1 du 1 2 1 du
u 6x 81u
1
1 du 1 ln u2
u 8 1
ln u c 1 ln 2 ln1
8
ln 3x2 x c = 0.0866
Page
32
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following reciprocal integrals:
a ) ∫ 1 b) ∫ 1
6
[ : | | + ] [ : 1 | | + ]
6
c) ∫ 3 d) ∫ 1
2 5 +7
[ : 3 | | + ] [ : 1 |5 + 7| + ]
2 5
e) ∫ 4 f) ∫ 8 −3 ∙
2−3 4 2−3
[ : − 4 |2 − 3 | + ] [ : |4 2 − 3 | + ]
3
Page
33
DBM 20023 – ENGINEERING MATHEMATICS 2
g) ∫13 2 ∙ h ) ∫23 1 ∙
9 9−2
[ : 0.2441] [ : 0.2554]
i) ∫02 2 ∙ j) ∫−21 4 ∙
3 +1 2 2+1
[ : 1.2973] [ : 1.0986]
Page
34
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following reciprocal integrals by using substitution
method:
a) 2x dx b) x 2x 5 1 dx
x2 2 5x
3
Ans : ln x2 3 c [ Ans : ln x2 5x 1 c ]
c) x 1 dx d) 6x 3 dx
4x x2
2x 2 1
[ Ans : 1 ln 2x2 4x 1 c ] [ Ans : 3ln x2 3 c
4
Page
35
DBM 20023 – ENGINEERING MATHEMATICS 2
3.5 lntegrals of Exponential Function
Learning Outcomes:
At the end of this topic student should be able to:
Perform integrals of indefinite Exponential functions by using
formulae and substitution method.
Integration of Exponential functions can be find using
formulae.
Exponential Function Integration
=
= ∫ = +
= ( + ) ∫ = 1 +
∫ ( + ) = 1 ( + ) +
Page
36
Example: DBM 20023 – ENGINEERING MATHEMATICS 2
∫ Example:
∫
∫ ∫
= ∫
= +
= +
Example:
Example:
∫
∫ 2−3
∫ ∫ 2−3
= + = ∫ 2−3
= − 1 2−3 +
3
Page
37
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following exponential integrals:
a ) ∫ ∙ b ) ∫ 4 ∙
[ : + ] [ : 4 + ]
c ) ∫ 2 5 ∙ d ) ∫ 6−3 ∙
[ : 2 5 + ] [ : − 1 6−3 + ]
5 3
e ) ∫ 2 (3 + 5 ) ∙ f) ∫ 3 +3 ∙
3
[ : 3 2 + 1 7 + ] [ : − −3 + ]
2 7
Page
38
DBM 20023 – ENGINEERING MATHEMATICS 2
g ) ex ; u 1 ex h ) 2e 2 x
1 e x dx dx
1 e2x
[ Ans :ln1 ex c ] [ Ans : ln 1 e2x c ]
Page
39
DBM 20023 – ENGINEERING MATHEMATICS 2
3.6 lntegration by Parts
Definition: The method of change of variable for integration
Introduction
Integration by parts is a technique for performing indefinite integration ∫ or definite
integration ∫ by expanding the differential of a product of functions ( , ) and
expressing the original integral in terms of a known integral ∫ . A single integration by parts
starts with :
( , ) = +
and integrate both sides,
∫ ( , ) = = ∫ + ∫
Rearranging gives
∫ = − ∫
Examples:
∫ 2 sin 3 , ∫ ln , ∫
Therefore the formula of part by part method is:
∫ = − ∫
Page
40
DBM 20023 – ENGINEERING MATHEMATICS 2
G u i d e l i n e s f o r t h e c h o i c e o f u a n d dv :
LIATEWe used word which is:
L – logarithmic functions
I – Inverse trigonometry functions
A – Algebraic functions
T – Trigonometry functions
E – Exponential functions
This word LIATE is arrangement to choose u which is a function to
derivatives first.
Page
41
Example: DBM 20023 – ENGINEERING MATHEMATICS 2
I n t e g r a t e ∫ Example:
I n t e g r a t e ∫(2 − 5)
L e t = a n d = L e t = 2 − 5 a n d =
∫ = ∫
= 1 ∫ = ∫ = 2 =
= 2
= = So using
So using ∫ = − ∫
∫ = − ∫
∫(2 − 5) = (2 − 5) − ∫ 2
∫ = − ∫ = (2 − 5) − 2 ∫
= − + = (2 − 5) − 2 +
= ( − ) +
Example:
So using
I n t e g r a t e ∫ cos
∫ = − ∫
L e t = = cos
∫ = ∫ cos ∫ = sin − ∫ sin
= 1
= sin − (− cos ) +
= + +
= = sin
Page
42
DBM 20023 – ENGINEERING MATHEMATICS 2
Example:
I n t e g r a t e ∫ 4 ln
L e t = ln = 4
= 1 ∫ = ∫ 4
= 1 . = 5
5
So using
∫ = − ∫
∫ 4 ln = ln [ 5 5] − ∫ 5 . 1
5
= 5 ln − ∫ 4
5 5
= 5 ln − 1 ∫ 4
5 5
= 5 ln − 1 [ 5 5] +
5 5
= − +
Page
43
DBM 20023 – ENGINEERING MATHEMATICS 2
EXERCISE:
Find the following integrals using Integration by Parts:
a ) ∫ 2 ln
[Ans: 3 ln − 3 + ]
3 9
b ) ∫ 2
[Ans: tan + ln| | + ]
Page
44
DBM 20023 – ENGINEERING MATHEMATICS 2
1 . ∫ ln( )
[Ans: ln − + ]
2 . sin
[Ans: − cos + sin + ]
Page
45
DBM 20023 – ENGINEERING MATHEMATICS 2
3 . ∫ 2
[Ans: 2 − 2 + ]
2 4
4 . ∫(2 + 3)
[Ans: (2 + 3) − 2 + ]
Page
46
DBM 20023 – ENGINEERING MATHEMATICS 2
5 . ∫ 2 cos
[Ans: 2 sin + 2 cos − 2 sin + ]
h ) ln x2 dx
Ans : x ln x2 2ln x 2 c
Page
47
DBM 20023 – ENGINEERING MATHEMATICS 2
i) 2 ln x dx
x2
2 ln x 2 c
x x
j ) ∫ 3 2
3 2 3 [ 2 2 2 2
2 2 2 2 4
[Ans: − − − ] + ]
Page
48
DBM 20023 – ENGINEERING MATHEMATICS 2
3.7 Integration of Partial Fraction
Introduction
This technique is used to integrate rational functions which cannot be solved using integration
techniques learnt so far.
Integration of Proper Fraction
Any algebraic fraction is said to be proper rational algebraic if degree of numerator is less than
the degree of denominator.
( ) < ( ) → ( )
( )
To integrate a proper rational function, express the function in partial fraction form.
Examples:
1. x x 1 A B (Linear factor)
x 1 x3
1x 3
2. x 1 A B C (Repeated linear factor)
x 1 x2
x 1x 22 x 22
Page
49
DBM 20023 – ENGINEERING MATHEMATICS 2
3.7.1 LINEAR FACTOR
When the denominator has any linear factor factor of the form ( − ), then there are exists a
partial fraction of the form
( − )
EXERCISE:
Find the indefinite integral:
1. ∫ −5 +11
2+ −2
Step 1: The denominator factorizes as ( + 2)( − 1)
Step 2: Rewrite into form below:
∫ −5 +11
( +2)( −1)
Step 3: −5 +11 resolve into partial fraction
( +2)( −1)
Partial Fraction
−5 +11 = +
( +2)( −1) +2 −1
−5 + 11 = ( − 1) + ( + 2)
When = 1,
−5(1) + 11 = (1 − 1) + (1 + 2)
6 = 3
=
Page
50