The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

1 Bronislaw Maciag Jan Maciag THE AETHER & THE GALILEAN TRANSFORMATION Tarnobrzeg 2012

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-05-25 21:39:02

THE AETHER & THE GALILEAN TRANSFORMATION

1 Bronislaw Maciag Jan Maciag THE AETHER & THE GALILEAN TRANSFORMATION Tarnobrzeg 2012

Bronislaw Maciag
Jan Maciag

THE AETHER
& THE GALILEAN
TRANSFORMATION

Tarnobrzeg 2012

1

Copyright © 2012 by Bronislaw Maciag & Jan Maciag.
Original title ‘ Eter i Transformacja Galileusza’.
Translated by Jadwiga Weglarz-Finnegan.

This version of ‘The Aether and the Galilean Transformation’ incorporates changes and
corrections made by the authors since it was first published in print in 2009
by the Cracow’s Publishing House ‘Tekst’.

All rights reserved, No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any information
storage or retrieval system, without permission in writing from the authors.

Authors:
Bronislaw Maciag

Jan Maciag

Tarnobrzeg, Poland
February 2012

2

CONTENTS

Preface .................................................................................................................................................................5

CHAPTER I:
MATHEMATICAL MODEL ...............................................................................................................7

I.1 ALBERT MICHELSON’S INTERFEROMETER .....................................................................................7

I.1.1 Assumptions and the coordinate systems ..............................................................................7

I.1.2 Rays of light in semi-transparent plate ..................................................................................10

I.1.3 Line equations in the OXY coordinate system .....................................................................10

I.1.4 The coordinates of the A ,...,A points and the lengths of the a ,...,a segments
15 15

in the OXY coordinate system ...................................................................................................11

I.1.5 The coordinates of the B ,...,B points and the lengths of the b ,...,b segments
15 15

in the OXY coordinate system ...................................................................................................15

THE GALILEAN TRANSFORMATION ...................................................................................................19
I.1.6 The coordinates of the A ,...,A points in the O’EQ system ............................................19

15

I.1.7 The coordinates of the B ,...,B points in the O’EQ system .............................................20

15

I.1.8 The lengths of distances traveled by the ray of light after leaving
the S slit at the angle  in the O’EQ system ..................................................................21

o

I.1.9 The lengths of distances traveled by the ray of light after leaving
the S slit at the angle  in the O’EQ system ..................................................................21

o

I.1.10 The relative difference of distances traveled by the rays of light
reaching one point on the screen M ......................................................................................21

I.1.11 The difference of phases of the light rays reaching one point on the
screen M .............................................................................................................................................22

I.1.12 The interference fringes shift values ......................................................................................23
I.1.13 Interference fringes shift values after changing the mirror-slit distance ...............29
I.2 Why were there no shifts of interference fringes observed in the Michelson–Morley’s
experiments? ....................................................................................................................................................31
I.3 Why was ‘the value of interference fringes shift’ calculated by Albert Michelson not
confirmed during the experiments? ........................................................................................................31
I.4 The velocities at which the centers of the Earth and the Sun travel with respect
to the aether ....................................................................................................................................................32
I.5 The velocity at which the center of our Galaxy travels with respect to the aether .........34

CHAPTER II:

THE VELOCITY OF THE INTERFEROMETER................................................................................35
II.1 The peripheral velocity V of the point U (, ) on the Earth’s surface...............................36

r
II.2 The V velocity at which the Earth’s center revolves around the Sun..................................37

zs

II.2.1 Determining the  angle.............................................................................................................38

II.2.2 Determining the angle..............................................................................................................38

II.2.3 Azimuth and the latitude of the Earth’s center velocity V .........................................40

zs

II.2.4 The speed V at which the Earth’s center revolves around the Sun........................42

zs

3

 
II.3 The velocities V ,V  V at which the Sun’s center moves with respect
se se1 se

to the aether ..................................................................................................................................................43
II.3.1 Azimuth and the altitude of the V velocity ........................................................................44

se
II.3.2 Azimuth and the altitude of the V velocity ......................................................................45

se1

II.4 Sum of velocities in the horizontal system .......................................................................................45
II.4.1 Velocity V  V .............................................................................................................................46
o o1
II.4.2 Velocity V  V .............................................................................................................................47

o o2

II.5 An Example ...................................................................................................................................................48

III.1 CHAPTER III:
NEWTON’S SECOND LAW OF MOTION .................................................................................50
III.2
III.3 Variable mass of a particle in the Newton’s second law of motion ......................................51
III.4 III.1.1 The velocity of the particle ....................................................................................................53
III.5 III.1.2 The energy of the particle ......................................................................................................54
III.1.3 Rest mass of the particle with respect to the aether ..................................................56
III.1.4 The laws of mechanics ........................................................................................................... 56
III.1.5 Determining the F force .......................................................................................................58

1

Times measured by atomic clocks ....................................................................................................63
Decay of particles .....................................................................................................................................64
Determining a sidereal day with atomic clocks ...........................................................................65
Determining the absolute velocities of the Earth and the Sun with atomic clocks ......67
III.5,1 Calculating absolute velocities of the Earth and the Sun (example) ...................75

IV.1 CHAPTER IV:
PROGRAMS ..............................................................................................................................................76
IV.2
IV.3 PROGRAMS: abIntM, baIntM, IntM .................................................................................................76
IV.4 IV.1.1 PROGRAM abIntM .....................................................................................................................77
IV.1.2 PROGRAM baIntM .....................................................................................................................80
IV.1.3 PROGRAM IntM ..........................................................................................................................81
PROGRAM Vo .............................................................................................................................................82
PROGRAM GHA .........................................................................................................................................85
PROGRAM VzeVse ...................................................................................................................................86

RESULTS AND CONCLUSIONS .........................................................................................................87
INDEX OF SYMBOLS ..............................................................................................................................88
LITERATURE .............................................................................................................................................91

4

PREFACE

In the 19th century physicists were convinced that there exists a medium, called the aether,
with respect to which light and all objects are in motion. James Clerk Maxwell believed that
with the use of light, it is possible to determine Earth’s speed in relation to the aether. Under
the Galilean transformation his equations link the speed of light (c) in the inertial frame of
reference with the frame’s velocity with respect to the aether.

Having become familiar with J. C. Maxwell’s deliberations, Albert A. Michelson came up with
an idea for an experiment by which the Earth’s motion with respect to the aether could be
measured with adequate precision and thereby the applicability of the Galilean transformation
to the motion of light could be verified. With an interferometer of his own design he made
calculations from which he obtained the relationship between ‘the shift of interference
fringes’ and the interferometer speed with respect to the aether. After applying the relative
speed of the interferometer against the aether as equal to the orbital speed of the Earth
(approximately 30 km/s) he obtained a specific shift value of about 0.04 of a fringe, and he
expected that the shift he was to observe during the experiment would be no smaller than the
value he had calculated. However, in the experiment which he performed in 1881 – after J. C.
Maxwell had already passed away – he observed no such shift. In 1887 Albert Michelson and
Edward Morley jointly repeated the experiments using a more advanced interferometer with
very much the same result as in 1881 i.e. no shift of interference fringes was observed.

While Albert Michelson’s calculations raised no doubts among physicists though the fact that
Michelson-Morley’s experiments failed to provide the observance of the shift of interference
fringes was weakening their faith in the existence of the aether. Ultimately the aether
concept was abandoned altogaether. In 1905 the Galilean transformation was replaced by
Hendrik A. Lorentz’s transformation after Albert Einstein’s presentation of the Special
Relativity (SR) theory that was based on two key postulates. The first assumes that no
preferred inertial frame of reference exists, which effectively means that the aether does not
exist, and the second assumes that the speed of light in a vacuum is the same in all inertial
frames of reference. The Galilean transformation holds when relative speeds of objects in
inertial frames are negligibly small compared to the speed of light c.

In this work a mathematical model of Albert Michelson’s interferometer was designed
assuming that the aether does exists and that the Galilean transformation is in operation. The
authors have created this model to explain exactly why no shift of interference fringes was
observed with the interferometer used in Michelson and Morley’s experiments.

Based on the data from the Michelson-Morley’s experiments and the values of the
interference fringe shifts resulting from the mathematical model which incorporated a variety
of angles that the interferometer was positioned at and considered its different speeds against
the aether, the speed of the interferometer on the Earth’s surface was determined with
respect to the aether. Then given the interferometer speed on the Earth with respect to the
aether and the speed at which the Sun revolves around the center of our Galaxy as well as
having taken into consideration the aberration of starlight, the relative speeds of the Earth,
the Sun and the Galaxy centers with respect to the aether were determined.

5

For experimental purposes such as investigating particles in linear accelerators, the
coordinates of the absolute velocity of the interferometer, and therefore of any object on the
Earth’s surface, in the horizontal frames of reference were determined. Then, according to
Newton’s second law, the motion of a particle was investigated with its speed-related mass
changes considered.

Finally, the decay of unstable particles was researched and it was shown that the elongation
of the Earth’s sidereal day with respect to the time measured by atomic clocks is merely
apparent. The relationship between the time measured by atomic clocks and the clocks’
speed with respect to the aether was determined. This was applied for calculating the Earth’s
and the Sun’s speeds with respect to the aether with the use of atomic clocks.

Acknowledgements
The authors wish to express their thanks to: Janusz D. Laski, PhD for his valuable comments
and critical remarks regarding this work and Prof. Brian O’Reilly for reading the English
version of the manuscript.

Authors:
Bronislaw Maciag

Jan Maciag

Tarnobrzeg, Poland
February 2012

6

CHAPTER I

MATHEMATICAL MODEL

I.1 ALBERT MICHELSON’S INTERFEROMETER
I.1.1 ASSUMPTIONS AND THE COORDINATE SYSTEMS

Let us assume that a medium, called the aether exists. Light and the interferometer move
with respect to the aether. In our considerations, in order to establish the motion of light and
the interferometer with respect to this medium, we introduce three coordinate systems placed
on one plane (Figs. 2, 3 & 4), namely:

1) A preferred absolute inertial coordinate system OXoYo, motionless with respect to the
aether (a frame of reference).

2) An OXY coordinate system.
Its initial point always corresponds to the OXoYo initial point. The OXY coordinate
system can rotate by any  angle with respect to the OXoYo system.

2) An O’EQ coordinate system fixed to the interferometer. The interferometer’s velocity
V is always parallel to the OXo axis. The O’E axis is always parallel to the OX axis.

o

The system’s origin corresponds to the origin of the OXoYo system only at the initial
time t=0 of an interferometer motion under consideration.

The O’EQ is an inertial system which moves togaether with the interferometer along the OXo
axis at a constant velocity V in relation to the OXoYo system. Another inertial system will be

o
obtained when the value of the V velocity modulus is changed and fixed. Thus, if we keep on

o
applying this procedure, any number of O’EQ inertial systems can be obtained. The V

o

velocities are the absolute velocities of the O’EQ systems. The light is an electromagnetic
wave that with respect to the aether travels in a vacuum with the C velocity which modulus

o

(speed) C = const.

o

7

Fig. 1 Diagram of Albert Michelson’s interferometer and the trajectory of light rays in the
interferometer.

SYMBOLS:

ZS source of light,
slit,
S
mirrors,
0
semi-transparent plate,
Z ,Z screen,
points successively reached by a ray of light after leaving the
12
slit S at the angle  ,
PP 0
M
points successively reached by a ray of light after leaving the
A ,...,A
slit S at the angle  ,
15 0

B ,...,B angles of the light rays refraction in the semi-transparent plate PP.

15

 ,

12

BASIC DIMENSIONS:
L , L , L, L ,

1 234

g thickness of the semi-transparent plate PP.
The values of basic dimensions and the wavelength of light in a vacuum, can be found on
page 76.

Herein two phenomena i.e. the light diffraction on the slit S and the interference of those

0

rays which after leaving the slit S at ,  angles reach one point on the screen M were
0

exploited. Points A , B coincide.

55

8

Fig. 2 The trajectory of light rays reaching point A on screen M after leaving the slit S at

50

the angle  .

Fig. 3 The trajectory of light rays reaching point B on screen M after leaving the slit S at

50

the angle  .
9

I.1.2 RAYS OF LIGHT IN SEMI-TRANSPARENT PLATE
(Figs. 1, 2 & 3)

According to Snell’s law the following equations can be obtained:

sin(45o   )  sin(45o   )  C   n
0
o

sin  sin  C  2
1 2 pp

Where:  , the angles of refraction of the light rays in the PP plate,
12 the index of refraction for the PP plate with respect to a vacuum,
n the speed of light in a vacuum with respect to the aether,
2 the speed of light in the PP plate with respect to the aether,
C the wavelength of light in a vacuum,
o the wavelength of light in the PP plate.
C
p

o

p

From the above equations we have:

(1.1)   arcsin sin(45o  )
1n
(1.2)
(1.3) 2
(1.4)
  arcsin sin(45o   )
2n

2

C C /n

p o2

  /n
p o2

I.1.3 LINE EQUATIONS IN THE OXY COORDINATE SYSTEM
(Figs. 1, 2, 3 & 4)

The straight line equations of the trajectory of light rays:

y, y , y, y , y

1 234 5

y, y , y , y , y
12 22 32 42 52

The line equation of the mirror Z :

1

(1.5) x  L  tV cos 

1o

The y line equation of the mirror Z :
62

(1.6) y  L  tV sin 
62 o

The y line equation of the screen M:
7

(1.7) y  L  tV sin 

7 4o

10

The y line equation of the PP plate on the side of the S slit.
80

The coordinates of the point A (x , y ) are:

0 a0 a0

(1**) x  L  tV cos 
a0 3 o

(2**) y  tV sin 

a0 o

The line y passes through point A hence its equation takes the following form:
80

y  tg45o  x  tg45o  x  y

8 a0 a0

Having considered equations (1**) & (2**) we obtain:

(1.8) y  x  L  tV (cos   sin )

8 3o

The y line equation of the other side of the PP plate.
9

y  y  2g therefore

98

(1.9) y  x  L  2g  tV (cos   sin )
93 o

In equations (1.5) - (1.9) the variable t represents the motion time of the interferometer.

I.1.4 THE COORDINATES OF THE A ,..., A POINTS AND THE LENGTHS OF
15

THE a ,...,a SEGMENTS IN THE OXY COORDINATE SYSTEM
15

The lengths of segments of the distance traveled by a ray of light leaving the slit S at the

0

angle  :

a S A , a A A , a A A , a A A , a A A .
1 01 2 12 3 23 4 34 5 45

1. POINT A AND THE LENGTH OF THE a SEGMENT

11

The coordinates of point A (x , y ) are determined by straight line equations:

1 a1 a1

a
y  tg  x , (1.8) y  x  L  tV (cos   sin ) , t  t  1 (1*) so
1 8 3o a1 C

o

(1.10) V cos 
x  [L  a o (cos   sin )]
a1 3 1 C cos   sin
o

(1.11) V sin 
y  [L  a o (cos   sin )]
a1 3 1 C cos   sin
o

The coordinates of the S A segment are: S A [x  0 , y  0]
01 0 1 a1
a1

We can write an equation: a2  x2  y2

1 a1 a1

which after applying formulae (1.10) and (1.11) takes the following form:

(1.12) a L 3

1V
cos   sin  (cos   sin ) o
C
o

11

2. POINT A AND THE LENGTH OF THE a SEGMENT

22

The equation of the y straight line which passes through the point A is:

21

y  tg(90o )  x  y  tg(90o )  x
2 a1 a1

The coordinates of A (x , y ) point are determined by straight lines equations:

2 a2 a2

a a
y , (1.6) y  L  tV sin  , t  t  1 2 (2*) thus
2 62 o a2 C

o

(1.13) x  x  sin [L  y V
 (a  a ) o sin ]
a2 a1 cos  2 a1 1 2 C
o

(1.14) V
y  L  (a  a ) o sin 

a2 2 1 2 C

o

The coordinates of the A A segment are: A A [x  x , y  y ]
1 2 a2 a1 a2 a1
12

x x x  sin a V
o sin 
a2 a1 a21 cos  2 C
o

V where:
y  y  y  a o sin 

a2 a1 a21 2 C

o

(1.15) x  sin (L  y V
 a o sin )
a21 cos  2 a1 1 C
o

V
(1.16) y  L  a o sin   y
a21 2 1 C a1

o

We can now write the following equation:

a2  (x  x )2 (y  y )2 which when solved, gives the following:
2 a2 a1 a2 a1

r r
(1.17) a  21 23 where:
(1.18)
(1.20) 2r 22

r  V sin  ( x sin  y ), (1.19) r  1  ( V sin  )2

o o

21 C a21 cos  a21 22 C cos 
o o

r  r2  r (x2  y2 )

23 21 22 a21 a21

3. POINT A AND THE LENGTH OF THE a SEGMENT

33

The equation of the straight line y which passes through the point A is given by:

32

y  tg(90o )  x  y  tg(90o )  x
3 a2 a2

The coordinates of the A (x , y ) point are determined by the equations of straight lines:

3 a3 a3

y , (1.8) y  x  L  tV (cos   sin ) , a a a (3*) thus
t t  1 2 3
3 8 3o
a3 C

o

(1.21) x sin  V cos  x
[L  y  (a  a  a ) o (cos   sin )] 
a3 sin   cos  3 a2 1 2 3 C sin  cos  a2
o

(1.22) y sin  V cos  x L 
[L  y  (a  a ) o (cos   sin )] 
a3 sin   cos  3 a2 1 2 C sin  cos  a2 3
o

V cos  V
 (a  a ) o (cos   sin )  a o (cos   sin )
1 2C sin  cos  3 C
oo

12

The coordinates of the A A segment are: A A [x  x , y y ]

23 2 3 a3 a2 a3 a2

x x x  sin  V
a o (cos   sin )
a3 a2 a31 sin   cos  3 C
o

y y y  cos  V where:
a o (cos   sin )
a3 a2 a31 sin   cos  3 C
o

(1.23) x sin  V cos  x x
[L  y  (a  a ) o (cos   sin )] 
a31 sin   cos  3 a2 1 2 C sin   cos  a2 a2
o

(1.24) y sin  V cos  x L 
[L  y  (a  a ) o (cos   sin )] 
a31 sin   cos  3 a2 1 2 C sin  cos  a2 3
o

V
 (a  a ) o (cos   sin )  y
1 2C a2

o

a2  (x  x )2 (y  y )2
3 a3 a2 a3 a2

Having solved the above equation, we obtain:

rr
(1.25) a  31 33 where:
(1.26)
(1.27) 3r 32 cos   sin 
(1.28) sin  cos 
r (x sin  y cos  ) V

o

31 a31 a31 C o

r  1 ( V cos   sin  )2

o

32 C sin  cos 
o

r  r2  r (x2  y2 )

33 31 32 a31 a31

4. POINT A AND THE LENGTH OF THE a SEGMENT

44

The equation of the y straight line which runs through the A point is given by:

43

y  tg(45o   )  x  y  tg(45o   )  x
4 1 a3 1 a3

Through the plate, light travels with the speed of C  C / n (1.3), hence to travel the

p o2

a na
distance a in the plate it requires the following time: 4  2 4

4 CC

po

The coordinates of the A (x , y ) point are determined by the equations of straight lines:

4 a4 a4

y , (1.9) y  x  L  2g  tV (cos   sin ) , a a a n a (4*) thus
4 93 o t t  1 2 3 2 4

a4 C

0

cos(45o   ) V
(1.29) x 1 [L  2g  (a  a  a  n a ) o (cos   sin ) 
a4 sin(45o   )  cos(45o   ) 3 1 2 3 24C
11
o

 tg(45o   )x  y ]
1 a3 a3

sin(45o   ) V
(1.30) y  1 [L  2g  (a  a  a  n a ) o (cos   sin ) 
a4 sin(45o   )  cos(45o   ) 3 1 2 3 24C
11
o

 tg(45o   )x  y ]  y  tg(45o   )x
1 a3 a3 a3 1 a3

The coordinates of the A A segment are: A A [x  x , y y ] with

34 3 4 a4 a3 a4 a3

13

cos(45o   ) V
x x x  1 n a o (cos   sin )
a4 a3 a41 sin(45o   )  cos(45o   ) 2 4C
11
o

sin(45o   ) V
y y y  1 n a o (cos   sin ) where:
a4 a3 a41 sin(45o   )  cos(45o   ) 2 4C
11
o

cos(45o   ) V
(1.31) x 1 [L  2g  (a  a  a ) o (cos   sin ) 
a41 sin(45o   )  cos(45o   ) 3 1 2 3C
11
o

 tg(45o   )x  y ]  x
1 a3 a3 a3

sin(45o   ) V
(1.32) y  1 [L  2g  (a  a  a ) o (cos   sin ) 
a41 sin(45o   )  cos(45o   ) 3 1 2 3C
11
o

 tg(45o   )x  y ]  tg(45o   )x
1 a3 a3 1 a3

a2  (x  x )2 (y  y )2
4 a4 a3 a4 a3

Having solved the above equation, we obtain:

r r
(1.33) a  41 43 where:
(1.34)
(1.35) 4r 42
(1.35.1)
V cos   sin 
r  [x cos(45o   )  y sin(45o   )]n o sin(45o   )  cos(45o   )
41 a41 1 a41 1 2C
11
o

r 1 ( n V cos   sin  )2

o

42 2C sin(45o   )  cos(45o   )
11
o

r  r2  r (x2  y2 )

43 41 42 a41 a41

5. POINT A AND THE LENGTH OF THE a SEGMENT

55

The equation of the y straight line which passes through the A point is given by:

54

y  tg(90o )  x  y  tg(90o )  x
5 a4 a4

The coordinates of the A (x , y ) point are determined by the equations of straight lines:

5 a5 a5

a a a n a a
y, (1.7) y  L  tV sin  , t  t  1 2 3 2 4 5 (5*) thus
5 7 4o a5 C

o

(1.36) x  sin [L  (a a a n a a V ] x
) o sin   y
a5 cos  4 1 2 3 2 4 5 C a4 a4

o

(1.37) V
y  L  (a  a  a  n a  a ) o sin 

a5 4 1 2 3 2 4 5 C

o

The coordinates of the A A segment are: A A [x  x , y y ] with
45 4 5 a5 a4
a5 a4

x x x  sin a V
o sin 
a5 a4 a51 cos  5 C

o

V
y  y  y  a o sin  where:
a5 a4 a51 5 C

o

(1.38) x  sin [L  (a a a n a V ]
) o sin   y
a51 cos  4 1 2 3 2 4 C a4

o

14

V
(1.39) y  L  (a  a  a  n a ) o sin   y
a51 4 1 2 3 2 4 C a4

o

a2  (x  x )2 (y  y )2
5 a5 a4 a5 a4

Having solved this equation we obtain:

rr 53
(1.40) a  51 where:
(1.41) 5r
(1.43) 52

r ( y x sin  ) V sin  , (1.42) r  1  ( V sin  )2 ,

o o

51 a51 a51 cos  C o 52 C cos 
o

r  r2  r (x2  y2 )

53 51 52 a51 a51

I.1.5 THE COORDINATES OF THE B ,...,B POINTS AND THE LENGTHS OF
15

THE b ,...,b SEGMENTS IN THE OXY COORDINATE SYSTEM

15

The lengths of distances traveled by the ray of light after leaving the S slit at the angle 
0

are:

b S B , b B B , b B B , b B B , b B B .

1 01 2 12 3 23 4 34 5 45

6. POINT B AND THE LENGTH OF THE b SEGMENT

11

The coordinates of the B (x , y ) point are determined by the straight lines equations:

1 b1 b1

y  tg  x , (1.8) y  x  L  tV (cos   sin ) , b (6*) thus
12 tt  1
8 3o
b1 C

o

(1.44) V cos 
x  [L  b o (cos   sin )]
b1 3 1 C cos   sin 
o

(1.45) V sin 
y  [L  b o (cos   sin )]
b1 3 1 C cos   sin 
o

The coordinates of the S B segment are: S B [x 0 , y  0]

01 0 1 b1 b1

b2  x2  y2 .

1 b1 b1

Having solved this equation we obtain:

(1.46) L
b 3
1V

cos   sin   (cos   sin ) o
C

o

7. POINT B AND THE LENGTH THE b SEGMENT

22

The equation of the y straight line which passes through the B point is:

22 1

y  tg(45o   )  x  y  tg(45o   )  x
22 2 b1 2 b1

b nb
Light travels the distance b within a time interval 2  2 2 .

2 CC

po

The coordinates of the B (x , y ) point are determined by the straight lines equations:

2 b2 b2

y , (1.9) y  x  L  2g  tV (cos   sin ) , b n b (7*) thus
22 93 o tt  1 2 2

b2 C

o

15

cos(45o   ) V
(1.47) x 2 [L  2g  (b  n b ) o (cos   sin )  y +
b2 sin(45o   )  cos(450   ) 3 1 22 C b1
22
o

 tg(45o   )x ]
2 b1

sin(45o   ) V
(1.48) y  2 [L  2g  (b  n b ) o (cos   sin )  y +
b2 sin(45o   )  cos(450   ) 3 1 22 C b1
22
o

 tg(45o   )  x ]  y  tg(45o   )x
2 b1 b1 2 b1

The coordinates of the B B segment are: B B [x  x , y  y ]
1 2 b2 b1 b2 b1
12

cos(45o   ) V
x x x  2 n b o (cos   sin )
b2 b1 b21 sin(45o   )  cos(45o   ) 2 2C
22
o

sin(45o   ) V
y y y  2 n b o (cos   sin ) where:
b2 b1 b21 sin(45o   )  cos(45o   ) 2 2C
22
o

cos(45o   ) V
(1.49) x 2 [L  2g  b o (cos   sin )  y 
(1.50) b21 sin(45o   )  cos(45o   ) 3 1C b1
22
o

 tg(45o   )x ]  x
2 b1 b1

sin(45o   ) V
y  2 [L  2g  b o (cos   sin )  y 
b21 sin(45o   )  cos(45o   ) 3 1C b1
22
o

 tg(45o   )x ]  tg(45o   )x
2 b1 2 b1

b2  (x  x )2 (y  y )2
2 b2 b1 b2 b1

Having solved the above equation we obtain:

s s
(1.51) b  21 23 where:
(1.52)
(1.53) 2s 22
(1.54)
V cos   sin 
s  [x cos(45o   )  y sin(45o   )]n o
21 b21 2 b21 2 2c sin(45o   )  cos(45o   )
22
o

s 1 ( n V cos   sin  )2

o

22 2C sin(45o   )  cos(45o   )
22
o

s  s2  s (x2  y2 )

23 21 22 b21 b21

8. POINT B AND THE LENGTH OF THE b SEGMENT

33

The equation of the y straight line which passes through the B point is:

32 2

y  tg  x  y  tg  x
32 b2 b2

The coordinates of B (x , y ) are determined by the following equations of straight lines:

3 b3 b3

y , (1.5) x  L  tV  cos  , b n b b (8*) thus
t t  1 2 2 3
32 1 o
b3 C

o

16

(1.55) V
x  L  (b  n b  b ) o cos 
b3 1 1 2 2 3 C

o

V
(1.56) y  tg[L  (b  n b  b ) o cos ]  y  tg  x
b3 1 1 2 2 3 C b2 b2

o

The coordinates of the B B segment are: B B [x  x , y y ]

23 2 3 b3 b2 b3 b2

V
x  x  x  b o cos 
b3 b2 b31 3 C

o

y y y  sin  b V where:
o cos 
b3 b2 b31 cos  3 C
o

V
(1.57) x  L  (b  n b ) o cos   x
b31 1 1 2 2 C b2

o

V
(1.58) y  tg[L  (b  n b ) o cos ]  tg  x
b31 1 1 2 2 C b2

o

b2  (x  x )2 (y  y )2
3 b3 b2 b3 b2

Having solved the above equation we obtain:

s s 33
(1.59) b  31 where:
(1.60) 3s
(1.61) 32
(1.62)
s (x y sin  ) V cos 

o

31 b31 b31 cos  C o

s  1 ( V cos  )2

o

32 C cos 
o

s  s2  s (x2  y2 )

33 31 32 b31 b31

9. POINT B AND THE LENGTH OF THE b SEGMENT

44

The equation of the y straight line which passes through the B point is:

42 3

y  tg(180o   )  x  y  tg(180o   )  x
42 b3 b3

y  tg  x  y  tg  x
42 b3 b3

The coordinates of the B (x , y ) point are given by the straight line equations:

4 b4 b4

y , (1.9) y  x  L  2g  tV (cos   sin ) , b n b b b (9*)
42 93 o t t  1 2 2 3 4

b4 C

o

thus

x  cos  [L  V
(1.63) b4 sin   cos  3 2g  (b  n b  b  b ) o (cos   sin )  y 
1 22 3 4 C b3
+ tg  x ]
b3 o

(1.64) y  sin  V
[L  2g  (b  n b  b  b ) o (cos   sin )  y 
b4 sin   cos  3 1 22 3 4 C b3

o

tg  x ]  y  tg  x
b3 b3 b3

The coordinates of the B B segment are: B B [x  x , y  y ]
3 4 b4 b3 b4 b3
34

17

x x x  cos  V
b o (cos   sin )
b4 b3 b41 sin   cos  4 C
o

y y y  sin  V where:
b o (cos   sin )
b4 b3 b41 sin   cos  4 C
o

x  cos  [L  V
(1.65) b41 sin   cos  3 2g  (b  n b  b ) o (cos   sin )  y 
1 22 3 C b3
tg  x ]  x
b3 b3 o

 sin  [L  V
(1.66) sin   cos  3 2g  (b  n b  b ) o (cos   sin )  y 
y 1 22 3 C b3
tg  x ]  tg  x
b41 b3 b3

o

b2  (x  x )2 (y  y )2
4 b4 b3 b4 b3

Having solved the above equation we obtain:

s s 43
(1.67) b  41 where:
(1.68) 4s
(1.69) 42
(1.70)
s (x cos   y sin  ) V cos   sin 
sin   cos 
o

41 b41 b41 C o

s 1 ( V cos   sin  )2

o

42 C sin   cos 
o

s  s2  s (x2  y2 )

43 41 42 b41 b41

10. POINT B AND THE LENGTH OF THE b SEGMENT

55

The equation of the y straight line which passes through the B point is:

52 4

y  tg(90o   )  x  y  tg(90o   )  x
52 b4 b4

The coordinates of B (x , y ) are determined by the straight line equations:

5 b5 b5

y, (1.7) y  L  tV sin  , b n b b b b (10*) thus
t t  1 2 2 3 4 5
52 7 4o
b5 C

o

(1.71) x  sin  [L  (b n b b b V ] x
 b ) o sin   y
b5 cos  4 1 2 2 3 4 5 C b4 b4

o

(1.72) V
y  L  (b  n b  b  b  b ) o sin 
b5 4 1 2 2 3 4 5 C

o

The coordinates of the B B segment are: B B [x  x , y y ]

45 4 5 b5 b4 b5 b4

x x x  sin  b V
o sin 
b5 b4 b51 cos  5 C
o

V where:
y  y  y  b o sin 
b5 b4 b51 5 C

o

(1.73) x  sin  [L  (b n b b b V ]
) o sin   y
b51 cos  4 1 2 2 3 4 C b4

o

V
(1.74) y  L  (b  n b  b  b ) o sin   y
b51 4 1 2 2 3 4 C b4

o

18

b2  (x  x )2 (y  y )2
5 b5 b4 b5 b4

Having solved the above equation we obtain:

s s
(1.75) b  51 53 where:
(1.76)
(1.77) 5s 52
(1.78)
s ( y x sin  ) V sin 

o

51 b51 b51 cos  C o

s  1 ( V sin  )2

o

52 C cos 
o

s  s2  s (x2  y2 )

53 51 52 b51 b51

THE GALILEAN TRANSFORMATION

When recalculating points A ,...,A , B ,...,B from the OXY inertial system into another
15 15

inertial system O’EQ, the Galilean transformation is applied.

I.1.6 THE COORDINATES OF THE A ,...,A POINTS IN THE O’EQ SYSTEM
15 relationship (1*)

POINT A (e , q ) , a relationship (2*)
t 1
1 a1 a1 a1 C relationship (3*)

o relationship (4*)

V
(1.79) e  x  t V cos   x  a o cos 
a1 a1 a1 o a1 1 C

o

V
(1.80) q  y  t V sin   y  a o sin 
a1 a1 a1 o a1 1 C

o

POINT A (e , q ) , a a
t 1 2
2 a2 a2 a2 C

o

V
(1.81) e  x  t V cos   x  (a  a ) o cos 
a2 a2 a2 o a2 1 2 C

o

V
(1.82) q  y  t V sin   y  (a  a ) o sin  = L
a2 a2 a2 o a2 1 2 C 2

o

POINT A (e , q ) , a a a
t 1 2 3
3 a3 a3 a3 C

o

V
(1.83) e  x  t V cos   x  (a  a  a ) o cos 
a3 a3 a3 o a3 1 2 3 C

o

V
(1.84) q  y  t V sin   y  (a  a  a ) o sin 
a3 a3 a3 o a3 1 2 3 C

o

POINT A (e , q ) , a a a n a
t  1 2 3 24
4 a4 a4 a4 C

o

V
(1.85) e  x  t V cos   x  (a  a  a  n a ) o cos 
a4 a4 a4 o a4 1 2 3 2 4 C

o

V
(1.86) q  y  t V sin   y  (a  a  a  n a ) o sin 
a4 a4 a4 o a4 1 2 3 2 4 C

o

19

POINT A (e , q ) , a a a n a a relationship (5*)
(1.87) t  1 2 3 24 5
(1.88) 5 a5 a5 a5 C

o

V
e  x  t V cos   x  (a  a  a  n a  a ) o cos 
a5 a5 a5 o a5 1 2 3 2 4 5 C

o

V
q  y  t V sin   y  (a  a  a  n a  a ) o sin   L
a5 a5 a5 o a5 1 2 3 2 4 5 C 4

o

I.1.7 THE COORDINATES OF THE B ,...,B POINTS IN THE O’EQ SYSTEM

POINT 15
(1.89)
(1.90) B (e , q ) , b relationship (6*)
POINT t 1
(1.91) 1 b1 b1 b1 C
(1.92)
POINT o
(1.93)
(1.94) V
POINT e  x  t V cos   x  b o cos 
(1.95) b1 b1 b1 o b1 1 C
(1.96)
POINT o
(1.97)
(1.98) V
q  y  t V sin   y  b o sin 
b1 b1 b1 o b1 1 C

o

B (e , q ) , b n b relationship (7*)
t  1 22
2 b2 b2 b2 C

o

V
e  x  t V cos   x  (b  n b ) o cos 
b2 b2 b2 o b2 1 2 2 C

o

V
q  y  t V sin   y  (b  n b ) o sin 
b2 b2 b2 o b2 1 2 2 C

o

B (e , q ) , b n b b relationship (8*)
t  1 22 3
3 b3 b3 b3 C

o

V
e  x  t V cos   x  (b  n b  b ) o cos   L
b3 b3 b3 o b3 1 2 2 3 C 1

o

V
q  y  t V sin   y  (b  n b  b ) o sin 
b3 b3 b3 o b3 1 2 2 3 C

o

B (e , q ) , b n b b b relationship (9*)
t  1 22 3 4
4 b4 b4 b4 C

o

V
e  x  t V cos   x  (b  n b  b  b ) o cos 
b4 b4 b4 o b4 1 2 2 3 4 C

o

V
q  y  t V sin   y  (b  n b  b  b ) o sin 
b4 b4 b4 o b4 1 2 2 3 4 C

o

B (e , q ) , b n b b b b relationship (10*)
t  1 22 3 4 5
5 b5 b5 b5 C

o

V
e  x  t V cos   x  (b  n b  b  b  b ) o cos 
b5 b5 b5 o b5 1 2 2 3 4 5 C

o

V
q  y  t V sin   y  (b  n b  b  b  b ) o sin   L
b5 b5 b5 o b5 1 2 2 3 4 5 C 4

o

20

I.1.8 THE LENGTHS OF DISTANCES TRAVELED BY A RAY OF LIGHT AFTER

LEAVING THE S SLIT AT THE ANGLE  IN THE O’EQ SYSTEM

0

(1.99) a  (e2  q 2 )1/ 2

1u a1 a1

(1.100) a  [(e  e )2  (q  q )2 ]1/ 2
2u a2 a1 a2 a1

(1.101) a  [(e  e )2  (q  q )2 ]1/ 2
3u a3 a2 a3 a2

(1.102) a  [(e  e )2  (q  q )2 ]1/ 2
4u a4 a3 a4 a3

(1.103) a  [(e  e )2  (q  q )2 ]1/ 2
5u a5 a4 a5 a4

I.1.9 THE LENGTHS OF DISTANCES TRAVELED BY A RAY OF LIGHT AFTER

LEAVING THE S SLIT AT THE ANGLE  IN THE O’EQ SYSTEM
0

(1.104) b  (e2  q 2 )1/ 2

1u b1 b1

(1.105) b  [(e  e )2  (q  q )2 ]1/ 2
2u b2 b1 b2 b1

(1.106) b  [(e  e )2  (q  q )2 ]1/ 2
3u b3 b2 b3 b2

(1.107) b  [(e  e )2  (q  q )2 ]1/ 2
4u b4 b3 b4 b3

(1.108) b  [(e  e )2  (q  q )2 ]1/ 2
5u b5 b4 b5 b4

I.1.10 THE RELATIVE DIFFERENCE OF THE DISTANCES TRAVELED BY THE

RAYS OF LIGHT REACHING ONE POINT ON THE SCREEN M

Fig. 4

Figure 4 shows points A , B of the screen M, togaether with their coordinates e , e ,
55 a5 b5

which were reached by the rays of light after leaving the slit S at the angles ,  .
0

The shift of the interference fringes is calculated with respect to point Mo with its coordinate

e on the screen M.

o

21

The coordinates e , e of the points A , B of screen M are dependent upon the variables
a5 b5 55

,  , ,V , thus the coordinates e , e take on the form of the following functions:
w a5 b5

e  e (, ,V ) relationship (1.87),
a5 a5 w

e  e (, ,V ) relationship (1.97),
b5 b5 w

where: V
V o.

wC

o

The interference of the rays of light which have left the slit S at the angles ,  will only
0

take place on the screen M (fig. 4) when points A and B coincide. This means the coordinates

55

are equal: e e

a5 b5

The relative difference of distances traveled by the rays of light in a vacuum is:

l /   [a  a  a  a  (b  b  b  b )] /  o
oo 1u 2u 3u 5u 1u 3u 4u 5u

The relative difference of distances traveled by the rays of light in the PP plate is:

l /   (a  b ) /  p where:
pp 4u 2u

  /n relationship (1.4)
p o2

Thus the total relative difference of distances traveled by the rays of light:

l /   l /   l / 
o oo p p

After transformation of the relationship we obtain:

(1.109) l /   [a  a  a  n a  a  (b  n b  b  b  b )] / 
o 1u 2u 3u 2 4u 5u 1u 2 2u 3u 4u 5u o

Let us introduce a symbol R :

w

(1.109a) R  l / 
wo

The relative difference of distances R depends upon the variables ,  , ,V and therefore
ww

it is defined by the function:

(1.109b) R  R (, , ,V )
ww w

We need to calculate the R value at any Mo point with its coordinate e on the screen M,

w0

given the angle    and at a fixed value V  V / C

n w oo

In order to do this we write the following equations:

(11*) e  e ( ,  ,V )  e
a5 a5 n n w o

(12*) e  e ( ,  ,V )  e
b5 b5 n n w o

Then by applying the appropriate computational software, we can compute such a pair of

angles ( ,  ) which satisfies the equations (11*) and (12*). Knowing the pair of angles
nn

( ,  ) at fixed values of  ,V we calculate the value of R :
nn nw w

(1.109c) R  l /   R ( ,  ,  ,V )
w o wn n nw

I.1.11 THE DIFFERENCE IN PHASES OF THE LIGHT RAYS REACHING ONE

POINT ON THE SCREEN M

Reaching one point on the screen the light rays may be identical or may vary in their phases.
The phase difference  of the light rays equals:

(1.110)   2  frac(Rw )

where : frac(Rw ) is a function denoting the fractional part of the R value.

w

22

I.1.12 THE INTERFERENCE FRINGES SHIFTS’ VALUES

On the screen M let us select a point Mo (Fig. 4) with the e coordinate (a fixed line in the

0

telescope), in relation to which we will calculate the shift of interference fringes.

Corresponding to both the angle     0 and the coordinate e , the pair of angles ( ,  )
1 0 11

satisfies the following equations:

e  e ( ,  ,V )  e 0
a5 a5 1 1 w

e  e ( ,  ,V )  e so
b5 b5 1 1 w 0

(1.111) R  R ( ,  ,  ,V )
w1 w 1 1 1 w

Corresponding to both the angle    and the coordinate e , the pair of angles ( ,  )
22
20

satisfies the following equations:

e  e ( ,  ,V )  e
a5 a5 2 2 w 0

e  e ( ,  ,V )  e 0 so
b5 b5 2 2 w

(1.112) R  R ( ,  ,  ,V )
w2 w 2 2 2 w

Leaving the slit S at angles ( ,  ), ( ,  ) the rays of light reach the Mo point of the e
0 11 2 2 0

coordinate.

Calculated with respect to the Mo point, the value k of the interference fringe shift depending
upon the angle  and a fixed value V is given by the following:

2w

(1.113) k(2 ,Vw )  Rw2  Rw1

The formula (1.113) can be applied to calculate the values of interference fringe shifts with

respect to any Mo point on the screen M, after rotating the interferometer by any angle 

2

and with the V  V / C fixed at any value.

w oo

Tables 2 – 7 give the values of the interference fringe shifts with respect to point Mo of the

coordinate

e0  0.1508323849500 m for different values of  ,V .

2w

The calculations were carried out using PROGRAM abIntM and PROGRAM baIntM presented

in Chapter IV of this work.

In the calculations the inequality of coordinates e  | (e  e ) /  |<1011 describes the
relative mutual approximation of points A , B . w a5 b5 o

55

In the calculations the approximation of points A , B to the Mo point is described by the

55

following inequalities of coordinates:

| e  e |  1011 m, | e  e |  1011 m ( Fig. 4 ).

o a5 o b5

The abovementioned approximations of points A , B , Mo are presented in tables 1 to 9.

55

23

e0  0.1508323849500 m V V /C

 0 2 w oo

1 R  R ( ,  ,  ,V )
1 w1 w 1 1 1 w
34
V
R
w1 1 w1

- rad rad -

10 5 2.9222260500 10 4 1.1095088345104 1198.61389486
5 105 3.2967446400 10 4 1.1246435578104 1198.61386441
3.7648875000 10 4 1.1435632972104 1198.61401471
10 4 1.1624845292104 1198.61434710
1.1814072238104 1198.61485214
1.5 10 4 4.2330243900 10 4 1.2949745878104 1198.62194350
2 104 4.7011552800 10 4 1.4843723702104 1198.64892601
5 104 7.5098150500 10 4 4.9188393828104 1202.59429842

103 1.2190436150 103
102 9.6338598000 103

TABLE 1

Relative differences of distances Rw1  Rw (1, 1, 1,Vw ) at     0

1

e0  0.1508323849500 m V V /C

w oo

  /4 R  R ( ,  ,  ,V ) k ( ,V )  R  R
2 w2 w 2 2 2 w 2w w2 w1
3
1 2 45
V
  Rw2 k ( ,V )
w
2 2 2w
-
rad rad - -

10 5 2.8993247900 10 4 1.1684172723104 1198.61385305  4.181105
3.1822405800 10 4
5 105 3.5358853000 10 4 1.4191841557 104 1198.61358540  2.790104
3.8895300200 10 4
10 4 4.2431747400 10 4 1.7326407963104 1198.61318576  8.289104
1.5 10 4 6.3650428803 10 4
2 104 9.9014893500 10 4 2.0460952664104 1198.61270173 1.645103
7.3557934700 10 3
5 104 2.3595475723104 1198.61214563  2.705103

10 3 4.2402157723104 1198.60709966 1.484102
10 2
7.3744891306104 1198.59227220  5.665102

6.3754765287 103 1196.95554573 5.638

Values of R  R ( ,  ,  ,V ) are presented in Table 1
w1 w 1 1 1 w

TABLE 2

Values of the interference fringe shifts k( ,V ) at    / 4 .
2w 2

24

e0  0.1508323849500 m V V /C
   / 4
w oo
2
R  R ( ,  ,  ,V ) k ( ,V )  R  R
w2 w 2 2 2 w 2w w2 w1

1 2 3 4 5

V   R k ( ,V )
2 2
w rad rad w2 2w

- 2.8902800200 10 4 1.0483841619 10 4 - -
10 5 3.1370133100 10 4 8.1902260516 10 5 1198.61393764 4.277 105
5 105 3.4454219502 10 4 5.3232748925 10 5 1198.61420143 3.370 10 4
104 3.7538217200 10 4 2.4563995015 10 5 1198.61488721 8.724 10 4
1.5 10 4 4.0622126680 10 4  4.1039970160 106 1198.61599036 1.643 10 3
2 104 5.9123725167 104 1.7609596901104 1198.61747170 2.619 10 3
5 1 04 8.9952635829 10 4  4.6268835060104 1198.63815940 1.62110 2
103 6.4333659825 10 3  5.6082175560103 1198.69592647 4.700 10 2
102 1206.89437454 4.300

Values of R  R ( ,  ,  ,V ) are presented in Table 1
w1 w 1 1 1 w

TABLE 3

Values of the interference fringe shifts k( ,V ) at    / 4 .
2w 2

e0  0.1508323849500 m V V /C
  /2
w oo
2
R  R ( ,  ,  ,V ) k ( ,V )  R  R
w2 w 2 2 2 w 2w w2 w1

1 2 3 4 5

V   R k ( ,V )
2 2
w rad rad w2 2w

- 2.8349912400 10 4 1.1906017454 10 4 - -
105 2.8605717800 10 4 1.5301090535 10 4 1198.61386731  2.755105
5 105 2.8925448400 10 4 1.9544967058 10 4 1198.61371836 1.460 10 4
104 2.9245150500 10 4 2.3788883244 10 4 1198.61366595  3.487 104
1.5 10 4 2.9564823600 10 4 2.8032838545 10 4 1198.61372009  6.270104
2 104 3.1482259889 10 4 5.3497398800 10 4 1198.61393648  9.156104
5 1 04 3.4675687794 10 3 9.5941484000 10 4 1198.61794096  4.002103
103 9.1664807771104 8.6060727920 10 3 1198.63526760 1.365 10 2
102 1201.28038669 1.313

Values of R  R ( ,  ,  ,V ) are presented in Table 1
w1 w 1 1 1 w

TABLE 4

Values of the interference fringe shifts k( ,V ) at    / 2 .
2w 2

25

e0  0.1508323849500 m V V /C
   / 2
w oo
2
R  R ( ,  ,  ,V ) k ( ,V )  R  R
w2 w 2 2 2 w 2w w2 w1

12 3 45

V  R k ( ,V )
w2 2 w2 2 w

- rad rad - -

105 2.8222003000 10 4 1.0208490571104 1198.61396654 7.168 10 5
5 105 2.7966170000 10 4 6.813455335110 5 1198.61423265 3.682 10 4
2.7646353000 10 4 2.5696968167 105 1198.61470493
104 2.7326507024 10 4 1.6740222578 10 5 1198.61530207 6.902104
1,5 104
9.549 10 4

2 104 2.7006632500104  5.9177019877 105 1198.61602312 1.170103
5 1 04
2.5086783385104  3.1378951600104 1198.62313876 1.195 10 3
103
102 2.1884737400104  7.3811214228104 1198.64554335  3.382103

 3.6241999271104  8.3691589093103 1201.24009280 1.354

Values of R  R ( ,  ,  ,V ) are presented in Table 1
w1 w 1 1 1 w

TABLE 5

Values of the interference fringe shifts k( ,V ) at    / 2 .
2w 2

e0  0.1508323849500 m V V /C
 
w oo
2
R  R ( ,  ,  ,V ) k ( ,V )  R  R
w2 w 2 2 2 w 2w w2 w1

1 23 4 5

V  R k ( ,V )
22
w rad rad w2 2w

- 2.7349653500104 1.1019418554104 - -
105 2.3604410300104 1.0868085674104 1198.61395537 6.050 10 5
5 105 1.8922802500104 1.0678932908104 1198.61414555 2.81110 4
104 1.4241135000104 1.0489795001104 1198.61456080 5.460 10 4
1.5 10 4 9.5594077664105 1.0300672000104 1198.61517355 8.264 10 4
2 104 1.8532210108104 9.9166245470105 1198.61596454 1.112 10 3
5 1 04  6.5356348070104 7.7672443000105 1198.62463692 2.693 10 3
103 1198.65393517 5.009 10 3
10 2 No light interference

Values of R  R ( ,  ,  ,V ) are presented in Table 1
w1 w 1 1 1 w

TABLE 6

Values of the interference fringe shifts k( ,V ) at    .
2w 2

26

Fig. 5

Fig. 6

Tables 2 to 6 present the values of the interference fringe shifts k( ,V ) ; Figures 5 and 6

2w

provide their graphic representation.

When the interferometer’s relative speed reaches the value of V  1.5104 , the shift of

w

interference fringes takes its maximum value of | k |  1.645103 . At any lower relative speed

values V  1.5104 the shifts are not observable.

w

The value of the interferometer’s relative speed cannot be lower than the value of the Earth’s

relative rotation speed, which is about 104 . Hence the relative speed of the interferometer

located on the Earth’s surface takes values within the following range:

(1.114) 104 ≤ V  1.5104 (Fig. 5).

w

27

e0  0.1508323849500 m V V /C

 0 w oo

1 R  R ( ,  ,  ,V )
w1 w 1 1 1 w
12
34
V
R
w1 1 w1

- rad rad -
0.1 9.2579809820102
0.3 2.6004654118101 4.1812603372 10 3 1909.681149
0.5 3.2170261308101 1.3836889860 10 2 24249.102056
2.4834178376 10 2 212815.140048

e0  0.1508323849500 m V V /C
  /4
w oo
2
R  R ( ,  ,  ,V ) , k ( ,V )  R  R
w2 w 2 2 2 w 2w w2 w1

12 3 4 5
R
V  k (2 ,Vw )
w2 -
w2 2
- 873.670
- rad rad 1036.010585 24592.198
0.1 7.1068798638102 343.096524
0.3 2.1407339919101 6.2422111812 10 2 216368.335
0.5 3.6167734252101 1.8572583970 10 1 3553.195447
3.0959467087 101

TABLE 7

Values of the interference fringe shifts k( ,V ) at    / 4 .
2w 2

Fig. 7
Table 7 provides values of the interference fringe shifts k( ,V ) , which are graphically

2w

presented in Figure 7.

28

I.1.13 VALUES OF THE INTERFERENCE FRINGE SHIFTS AFTER CHANGING

THE MIRROR-SLIT DISTANCE

We will calculate the values of the interference fringe shifts with respect to the Mo point at a

given angle  after the distance between the mirror Z and the slit S has been changed.

n 20

The distance L is replaced by the distance L  L .

2 22

A pair of angles ( ,  ) , which corresponds to: the angle    , the coordinate e and the
22 n0

distance L2 , satisfies the following equations:

e  e ( ,  ,V )  e 0
a5 a5 2 n w

e  e ( ,  ,V )  e
b5 b5 2 n w 0

The relative difference of distances traveled by rays of light equals:

(1.115) R  R ( ,  ,  ,V )
w2 w 2 2 n w

A pair of angles ( ,  ) , which corresponds to: the angle  , the coordinate e
2L2 2L2
n 0

and the distance L  L , satisfies the following equations:

22

e  e ( ,  ,V , L )  e
a5 a5 2L2 n w 2 0

e  e ( ,  ,V , L )  e
b5 b5 2L2 n w 2 o

The relative difference of distances traveled by rays of light equals:

(1.116) R  R ( ,  ,  ,V , L )
w2L2 w 2L2 2L2 n w 2

The rays of light leaving the slit S at angles ( ,  ) and ( ,  ) reach the Mo point on
0 22 2L2 2L2

the screen M.

Depending on the distance increment L the k value of the interference fringe shift with

2

respect to the Mo point equals:

(1.117) k  k( ,V , L )  R  R
nw 2 w2L2 w2

In Tables 8 and 9 the values of interference fringe shifts were given with respect to the Mo

point of the coordinate e0  0.1508323849500 m at the distance L 1.25  and at the angles
2o

   / 4 and    / 2 .
nn

MEASURING LENGTH WITH THE MICHELSON’S INTERFEROMETER
The evaluation of the measured length.

We are going to evaluate how accurately the length was calculated by the means of the

mathematical model of the Michelson’s interferometer.

W  (k / 2) the length calculated with the mathematical model,
mo the length determined with the physical model,

W  (k / 2)
ff o

where: k the read value of the interference fringes shift.

f

W  L , W  L

m2 f2

With a mathematical model the accuracy of the calculated length W is specified by the

m

following formula:

| L W |

2m

L

2

In the mathematical model the length L is known by assumption, whereas in the physical

2

model the length L is the length that is measured.

2

29

e0  0.1508323849500 m L  1.05 m L  1.25  V V /C
   /4 2o
2 w oo
n2
R  R ( ,  ,  ,V , L )
w2L2 w 2L2 2L2 2 w 2

k  k( ,V , L )  R  R
2w 2 w2L2 w2

1 2 3 4 5

V   R k
2L2 2L2 -
w rad rad w2L2 2.500002274
2.500002465
- 2.8993229999 10 4 1.1684172614 10 4 -
105 3.1822388000 10 4 1.4191841515 10 4 1201.1138553246 2.500000353
5 105 3.5358835200 10 4 1.7326407898 10 4 1201.1135878711 2.500007475
104 3.8895282499 10 4 2.0460952718 10 4 1201.1131861135 2.500006704
1.5 10 4 4.2431729800 10 4 2.3595475866 10 4 1201.1127092074 2.500003427
2 104 6.3650410900 10 4 4.2402157582 10 4 1201.1121523343 2.499994957
5 1 04 9.9014875798 10 4 7.3744891363 10 4 1201.1071030963 2.500004779
103 7.3557932900 10 3 6.3754765270 10 3 1201.0922671575
10 2 1199.4555505123

Values of R  R ( ,  ,  ,V ) are presented in Table 2
w2 w 2 2 2 w

TABLE 8

Values of the interference fringe shifts k  k( ,V , L )  R  R at      / 4 .
2w 2 w2L2 w2 n2

e0  0.1508323849500 m L  1.05 m L  1.25  V V /C
   /2 2o
2 w oo
n2
R  R ( ,  ,  ,V , L )
w2L2 w 2L2 2L2 2 w 2

k  k( ,V , L )  R  R
2w 2 w2L2 w2

1 2 34 5

V   R k
2L2 2L2 -
w rad rad w2L2

- 2.8349894800 10 4 -
105 2.8605699600 10 4
5 105 2.8925430500 10 4 1.1906017666104 1201.1138711255 2.500003815
104 2.9245132000 10 4
1.5 10 4 2.9564805000 10 4 1.5301090309104 1201.1137162018 2.499997839
2 104 3.1482240330 10 4
5 1 04 3.4675666035 10 4 1.9544967294104 1201.1136558912 2.49998994
103 9.1664750538 10 4
10 2 2.3788883096104 1201.1137241032 2.500004007

2.8032838497 104 1201.1139420345 2.500005549

5.3497398992104 1201.1179393790 2.499998419

9.5941484000104 1201.1352681443 2.500000583

8.606072795103 1203.7803835719 2.499996878

Values of R  R ( ,  ,  ,V ) are presented in Table 4
w2 w 2 2 2 w

TABLE 9

Values of the interference fringe shifts k  k( ,V , L )  R  R at      / 2 .
2w 2 w2L2 w2 n2

.

30

An Example.

The accuracy of the calculated length is the lowest at    / 2 and V  104
2w

(the lowest k value in Table 9).

Table 9:    / 2 , V  104 , L  1.25  , k  k( ,V , L )  2.49998994 .
2w 2o 2w 2

So W  (2.49998994 / 2)  1.24999497  
m oo

| L W |  (1.25 1.24999497)  4.024 106 .
o
2 m

L 1.25 
2o

The calculated accuracy applies also to the length W determined with the physical model i.e.

f

the real model.

I.2 WHY WERE THERE NO SHIFTS OF INTERFERENCE FRINGES OBSERVED

IN THE MICHELSON-MORLEY’S EXPERIMENTS?

The relative speed V of the interferometer located on the Earth is specified by the

w

relationship (1.114): 104 ≤ V  1.5104

w

Within this range of relative speeds V , the shift values are very small | k |  1.645103 (see

w

Tab.1-6), hence non-observable (Fig. 5).

I.3 WHY WAS ‘THE VALUE OF THE INTERFERENCE FRINGES SHIFT’ CALCULATED BY

ALBERT MICHELSON NOT CONFIRMED DURING THE EXPERIMENTS?

With the aim of calculating the values of the interference fringe shifts, Albert Michelson
considered the mutually perpendicular rays of light that were reaching the Z , Z mirrors.

12

This happens when the rays of light leave the slit S at the angles   0 ,   0 .
0

Table 10 contains calculations which indicate that the rays of light that leave the slit S at

0

the angles   0 ,   0 reach distant points A , B of the screen M. The distance between
55

the two points is equal to several hundreds wavelengths of light, therefore no interference of
the light waves occurs.

Let us introduce the following symbols:

(1.118) R  R (,V )  l /  the relative difference of distances traveled by the
rw rw w o
rays of light, reaching distant points A , B of the

55

screen M in the O’EQ system,

(1.119) K  R ( ,V )  R ( ,V ) the difference of relative differences of distances R .
r rw 2 w rw 1 w rw

31

In accordance with the results of calculations contained in Table 10 at    / 2 and
2

V  104 , the K takes the value:

wr

K  R ( ,V )  R ( ,V )  1198.4682686 1198.5038720  3.56102 .
r rw 2 w rw 1 w

The calculated value of K  3.56102 is not the shift value k . The distance | e  e |

r a5 b5

between the points A5 and B5 on the screen M which were reached by the rays of light

equals: 273.974180  when 2  /2 and 985.786396 o at 1  0 .
o

It is evident that by assuming perpendicularity between the light rays and the Z , Z mirrors,

12

Albert Michelson actually calculated the value of │ K r │  0.04 (1.119) and not the shift

value k (1.113).

V  V / C  104

w oo

 0,  0 K  R ( ,V )  R ( ,V )
r rw 2 w rw 1 w

12 34 5

 e (  0,  ,V ) e (  0,  ,V ) |e e |/ R ( ,V )
1 a5 1w b5 1 w a5 b5 o
rw 1 w

rad m m - -
985.786396 1198.5038720
0 0.1499477388 0.1505293528

 e (  0,  ,V ) e (  0,  ,V ) |e e |/ o R ( ,V )
a5 2 w b5 2 w a5 b5
2 m m rw 2 w
rad -
0.1501527315 0.1503143762 -
 /2 273.974180
1198.4682686

TABLE 10

The table presents the values of: R ( ,V ) , R ( ,V ) and | e  e | /  together with
rw 1 w rw 2 w a5 b5 o

the coordinates e , e of the A , B points reached by the light rays that have left the slit S
a5 b5 55 0

at the angles   0 ,   0 and V  V / C  104 . These calculations were carried out with
w oo

the computational program PROGRAM IntM (see Chapter IV).

I.4 THE VELOCITIES AT WHICH THE CENTERS OF THE EARTH AND THE SUN TRAVEL

WITH RESPECT TO THE AETHER
(in relation to a specific absolute OXoYoZo system)


In relation to the aether, the interferometer velocity V on the Earth’s surface is the sum of

o

three vectors:   

(1.120) V V V V
 o r zs se
The vector V is the peripheral velocity of a point i.e. a place on the Earth’s surface where
r

the interferometer is located. The plane of this vector is parallel to the one at the equator.

Its modulus value equals: V  0.464 cos   km / s , where:
r
 is the latitude of the interferometer’s position.

32


The vector V is the velocity of the Earth’s center around the Sun. This vector is located on

zs

the Earth’s ecliptic plane.

V  29.29 km / s , V  30.28 km / s
zs min zs max

In our considerations an approximate modulus value of the vector V will be adopted, namely
zs

V  30 km / s

zs

(1.121) V / C  104

zs o


The vector V is the velocity of the Sun’s center with respect to the aether. This vector is

se

perpendicular to the ecliptic plane, which is conclusive from starlight aberration. 
The vector V can be omitted due to its small modulus value compared to that of the V vector.

r zs

Consequently the equation (1.120) takes the following form:

(1.122)  
V V V
 o zs se

Since the vectors V ,V are mutually perpendicular, the following equation can be written:
zs se

(1.123) V 2 V 2 V 2

o zs se

According to (1.114): 104 ≤ V  1.5104 , V  V / C and therefore

w w oo

(1.124) 104 ≤ V / C  1.5104
oo

The interferometer is located on the Earth’s surface so its velocity V is equal to the
o

velocity of the point on the Earth’s surface (a laboratory) with respect to the aether, which is
approximately the velocity V of the Earth’s center with respect to the aether:
 ze
(1.125) V V
o ze

After considering the inequality (1.124) we obtain:

(1.126) 104 ≤ V / C  1.5104 , Vze  Vo

ze o

This inequality (1.126) specifies the speed of the Earth’s center relative to the aether,
expressed with respect to the speed of light Co .
The speed Vse of the Sun center with respect to the aether can be determined from the four
relations i.e. (1.121), ((1.123), (1.125) and (1.126).

From the equation (1.123): V 2  V 2 V 2
se o zs

and the equation (1.125) we obtain:

V 2 V 2 V 2

se ze zs

consequently after applying (1.121) and (1.126), we further obtain:

(1.127) 0 ≤ V / C  1.12104

se o

The inequality (1.127) specifies the speed of the Sun’s center relative to the aether,

expressed with respect to the speed of light Co .

33

I.5 THE VELOCITY AT WHICH THE CENTER OF OUR GALAXY TRAVELS

WITH RESPECT TO THE AETHER
(with respect to a specific absolute OXoYoZo system)


With respect to the aether, the center of the Sun travels at the velocity V which is the sum

se

of the following vectors:  
(1.128) V V V
 se sg ge
The vector V is the velocity with which the Sun center rotates around the center of our
sg

Galaxy. It takes an approximate modulus value of: V  250 km / s

sg

(1.129) V / C  8.33104
 sg o
The vector V is the velocity at which the center of our Galaxy moves with respect to the
ge

aether.

From the equation (1.128) we ob tain:
(1.130) V   V V
ge sg se

Then from (1.127) , (1.129) and (1.130) we can determine the speed V of the Galaxy

ge

center with respect to the aether:

(1.131) (8.33 1.12) 104  Vge / Co  (8.33 1.12) 104

The inequality (1.131) specifies the speed of the Galaxy center relative to the aether,

expressed with respect to the speed of light Co .

Knowing the apex A ( , ) of solar motion around the Galaxy center, we can estimate
sg sg sg

approximately the apex A ( , ) of the Galaxy center’s motion with respect to the aether:
ge ge ge

   ,
ge sg

   180o ,
ge sg

where:  , declination of apexes,
sg ge

 , right ascension of apexes.
sg ge

34

CHAPTER II

THE VELOCITY OF THE INTERFEROMETER


The interferometer absolute velocity V is the sum of three vectors:
   o
V V V V as in relation (1.120)
 o r zs se
where: V peripheral velocity of the point U on the Earth’s surface where
r

 the interferometer is located,
V the velocity at which the Earth’s center revolves around the Sun,
zs
V the velocity at which the Sun’s center travels relative to the aether.

se


The aether-relative velocity V of the Sun center is perpendicular to the plane of the ecliptic.

se

However, the direction of that velocity (a vector) is not known. Hence in our deliberations, we

will consider two vectors perpendicular to the ecliptic plane, namely:
vector V and vector V   V .

se se1 se

Thus two vectors are obtained: 
(2.1) V V V V
01 r zs se
(2.2) V V V V
02 r zs se1

Therefore the interferometer absolute velocity V is:
o
 
either the vector V  V or the vector V0  V02

0 01

In this chapter the coordinates of the vectors V and V were established in the
01 02

horizontal coordinate system.

35



II.1 THE PERIPHERAL VELOCITY Vr OF THE U (, ) POINT ON THE EARTH’S SURFACE

Fig. 8 
Peripheral velocity V and its azimuth A

rr

SYMBOLS:

U (, ) a location (point) with geographical coordinates ,  ,

at which the interferometer has been located,

lp a vertical line which runs through the point U (, ) and the center of the globe 0,

pha the plane of astronomical horizon i.e. its projection, which runs through the globe

center 0 and is perpendicular to the vertical line lp ,

ph the plane of the horizon i.e. its projection, which runs through the point

U (, ) and is perpendicular to the vertical line lp ,

N the northern point of the horizon,

S the southern point of the horizon,

Nu Su line the line of intersection between the horizon plane and the meridian plane, both of
which run through the U (, ) point,

R the radius of the globe, 

Ar the azimuth of the Earth’s peripheral velocity Vr .

The peripheral speed Vr of the point U (, ) :

(2.3) Vr  R cos 

where:

 the angular speed of the Earth’s rotation.


The peripheral velocity V is located on the horizon plane which runs through

r

the point U (, ) .

36


II.2 THE VELOCITY V AT WHICH THE EARTH’S CENTER REVOLVES AROUND THE SUN

zs

.

Fig. 9 The Earth’s motion on its orbit around the Sun.

SYMBOLS: an average Earth-Sun distance,
a small semi-axis of the Earth’s orbit,
a a radius vector,
b true anomaly,
r
 

 an angle ∡ (r,Vzs ) ,

p annual precession within ecliptic (in longitude),

e the eccentricity of the Earth’s orbit,

Sn the Sun,

P z a point on the orbit in which the center of the Earth is located,
V
the velocity at which the center of the Earth revolves around the Sun,
zs
Winter’s position (Earth’s location when astronomical winter starts),
A1 Summer’s position (Earth’s location when astronomical summer starts),
A2 Earth’s location at the time of spring equinox,
B1 Earth’s location at the time of spring equinox of previous tropical year,
B1’ Earth’s location at the time of autumn equinox,
B2 Earth’s location at the beginning of a new calendar year of the UT time,
No Universal Time.
UT

B1’A2 spring, A2 B2 summer,
B2 A1 autumn, A1 B1 winter.

37

II.2.1 DETERMINING THE  ANGLE

In the OX1Y1 system the coordinates of the Earth’s center on the orbit are defined as follows:

(13*) x  ea  r cos  ea  a cos  (1 e2 ) , r  a(1 e2 )
z 1 e cos 1 e cos

(14*) y  r sin  a sin  (1 e2 )
z 1 e cos

The equation of the line tangent to the Earth’s orbit in the P (x , y ) point is:

zz z

xx yy b  a 2  (ea)2
1 z  1 z 1,
a2 b2

After transformation we obtain: y  b2x x  b2

z

1 a2y 1 y

z z

Thus the angular coefficient of the line tangent to the orbit in point P (x , y ) equals:

zz z

(15*) tg   b 2 xz  (b / a) 2 xz
3 a2 yz yz

Applying equations (13*), (14*) we obtain a quotient:

x  e(1 e cos )  1

z

y sin  (1 e2 ) tg

z

From the equation (15*) we obtain:

(2.4)   arctg [  (b / a)2 ( e(1 e cos )  1 )],   0 ,   180o ,   360o

3 sin  (1 e2 ) tg

(2.5)   | | (Fig. 9)
23

(2.6)   arctg b (Fig. 9) so
0 ea
(2.7)
(2.8)    when 0  ≤180o 
(2.9) 2 0
(2.10)
   when 180o    180o
2 0

  180o   when 180o  ≤ 180o 
2 0

  180o   when 180o    360o
2 0

where:  true anomaly (Fig. 9).

II.2.2 DETERMINING THE ANGLE

The true anomaly  is the angle between the radius vector r and the direction from the Sun
center towards the point on the orbit nearest to the Sun i.e. the perihelion.

Corresponding to a specific time, the  angle can be determined from the Kepler second law:

r 2 d  C  const
dt 1

r  a(1 e2 ) (the radius vector)
1 e cos

From the above the following integral is obtained:

t( )  [a(1 e2 )]2 d

C (1 e cos ) 2

1

38

After integration we have:

(2.11) t( )  [a(1 e2 )]2 [  e sin  1 ( 2 arctg 1 e2 tg( / 2) )]+ C

C (1 e2 )(1 e cos ) 1 e2 1 e2 1 e 2

1

Let us adopt an initial condition:

 0  t 0, hence the integration constant C  0 , so

2

t( )  a 2 (1 e2 )e ( 2 arctg 1 e2 tg( / 2)  sin )
C 1 e 1 e cos
e 1e2
1

T where: T is the stellar year, we can
From the condition that   180o  t( )  rg
rg
2

determine the C constant

1

T  a 2e(1 e2 ) 2  hence:

rg

2 C e 1e2 2

1

(2.12) C  2  a 2 (1 e2 ) then
1 T 1e2

rg

(2.13) e 1 e2 T ( 2 arctg 1 e2 tg( / 2)  sin )
t( ) 
rg

2 e 1 e2 1 e 1 e cos

The t( ) function is of negative value when   180o .

In order to avoid negative time values we introduce two functions:

(2.14) t ( )  t( ) when 0 ≤  ≤ 180o
(2.15) when 180o   360o
1

t ( )  T  t( )
2 rg

Then we define the following symbols:

T tropical year

rz

T the duration of astronomical winter.

z

T  t (90o  )  T  t (360o  ) (Fig.9) which after transformation
z1 4 rg 2 1

T  t(90o  )  t(360o  )
z4 1

Angle     p (Fig. 9), where:
41

(2.16) p  (Tz / Trz ) p precession in the ecliptic (in longitude) during the time of

astronomical winter.

Therefore

(2.17) Tz  t(90o  p 1)  t(360o 1) .

If the astronomical winter duration time T is known, the  angle can be determined from
z1

the equation (2.17) by the method of successive approximations.

Let us say that Ta means the time which has elapsed from the moment the astronomical
winter of the UT time started (point A , Fig. 9) up to the moment the Earth is nearest to the

1

Sun (the perihelion).

Ta can be determined from the relationship:
Ta  Trg  t2 (360o 1)  t(360o 1)  t(1)

(2.18) Ta  t(1)

Then let us say that Tb means the time which has passed from the start of astronomical
winter up to the end of a calendar year of the UT time (point No , Fig. 9).

Tb  Ta

39

The difference of the Ta ,Tb times equals:
Ta  Tb  Trg  t2 (360o 5 ) .

After transforming the equation, the following is obtained:

Ta Tb  t(360o 5 )  t(5 ) so

(16*) Ta  Tb  t(5 )

Referring to equation (2.11) and adopting an initial condition:

    t( )  0
5

with a constant value C specified by the relationship (2.12),

1

an integration constant C can be calculated:

2

C e 1 e2 T ( 2 arctg 1 e2 tg( / 2)  sin )  t( ) ,
 5 5
rg 1 e

2 2 e 1 e 2 1 e cos 5

5

C  t( ) .
25

Having considered the equation (16*) we obtain:

(2.19) C2  Ta  Tb

Now we can specify the relationship between the UT time and the  angle i.e. true anomaly:

(2.20) t3( )  t( )  (Ta Tb ) when 0 ≤  ≤ 180o
(2.21) t4 ( )  Trg  t( )  (Ta  Tb ) when 180o   360o

From equations (2.20) and (2.21) the value of the  angle for any given time UT can be
calculated with the use of the method of successive approximations.


II.2.3 AZIMUTH AND THE ALTITUDE OF THE EARTH’S CENTER VELOCITY V
  zs

The definitions that follow refer to to the following vectors: V , V and V  V .
zs se se1 se

The V and V vectors are also the velocities of the Earth’s center. The declination  of a
se se1

vector is the angle between the vector and the plane of the celestial equator.

The Greenwich hour angle GHA of a vector is a dihedral angle between the semi-circle of the
celestial meridian in Greenwich and the hour semi-circle which runs through the vector. The

GHA angle counting starts at the semi-circle of the celestial meridian in Greenwich and up
towards the West.

The local hour angle LHA of a vector is a dihedral angle between the celestial meridian
semi-circle of the observer and the hour semi-circle which runs through the vector.

The right ascension  of a vector is a dihedral angle between the hour semi-circle which

runs through the spring equinoctial point i.e. the Aries point and the hour semi-circle which

runs through the vector. The right ascension counting starts at the Aries point up towards the

East.

The altitude H of a vector is an angle between the vector and the horizon plane.
Starting from the northern point of the horizon, the azimuth A of a vector is a dihedral angle

between the celestial meridian of the observer and the semi-circle which runs through the

vertical line and the vector; whereas starting from the northern direction ( Nu ,, Fig.12) the
azimuth A of a vector is an angle between the Nu Su line and the projection of the vector on
the horizon plane that runs through the point U (, ) .

The observer is located in the same place as the interferometer.The above definitions

correspond to the definitions which refer to celestial bodies.

40

Fig. 10 Coordinates of the equatorial system: declinations, right ascensions.

SYMBOLS: O the center of the globe,

1 celestial equator,

2 ecliptic,

3 celestial zone,

4, 5 hour semi-circles,

Sn the Sun,

PB the Aries point,

 inclination of the ecliptic to the equator,

 right ascension of the Sun,
s

s declination of the Sun,

 right ascension of the Vzs velocity,
zs 

 declination of the Vzs velocity,
zs

 an angle ∡ (r,Vzs ) relationships (2.7 – 2.10)

From two perpendicular spherical triangles, shown in Fig.10, the right ascension  as well
 zs

as the declination  of the Earth’s center velocity V will be determined.

zs zs

(2.22) tg  tgk cos  , hence 0 ≤   90o
(2.23) s1 when s
(2.24) when
tg when 90o    270o
k  arctg s s
1 cos 
270o    360o
tg s
k  180o  arctg s
1 cos 

tg
k  360o  arctg s
1 cos 

41

(2.25) k  k  (Fig. 10).
21
(2.26)
(2.27) tg  tgk cos  , hence
zs 2

  arctg(tgk cos  ) when  90o  k  90o
zs 2
2
 zs  180o  arctg(tgk2 cos  ) when
90o  k  270o

2

sin  sin k sin  , hence
zs 2

(2.28)   arcsin (sin k sin  )
zs 2

The angles in the equatorial system which are necessary to determine the coordinates of the
vector V in the horizontal system are:

zs

(2.29) GHA  GHAaries 
zs zs

LHA  GHA   so
zs zs

(2.30) LHA  GHAaries   
zs zs

where:

GHAaries Greenwich Hour Angle of the Aries Point,
GHA Greenwich Hour Angle of the V velocity,

zs  zs
Local Hour Angle of the V velocity,
LHA
 zs
zs right ascension of the V velocity,

 ZS zs

 longitude of a place (point U) where the interferometer is located.
The altitude H of velocity V in the horizontal system:

zs zs

sin H  cos  cos  cos LHA  sin sin , where:
zs zs zs zs

 the latitude of a place (point U, Fig. 8) where the interferometer is located.

Hence:

(2.31) H  arcsin(cos  cos  cos LHA  sin sin)
zs zs zs zs
The azimuth A of velocity V , calculated within the range from 0 to 360 o starting from
zs zs

the northern point of the horizon, is expressed as:

sin A   cos  zs sin LHA

zs cos H zs

zs

sin   sin H sin
cos A  zs zs

zs cos H cos 
zs

Let us introduce the following symbols:

sin   sin H sin
(2.32) d zs zs , ( = )
(2.33) d cos A
zs cos H cos  zs
zs

zs

z d /|d | , Azs  900 , Azs  2700 . Therefore
zs zs zs

(2.34) A  90o (3  z )z arcsin ( cos  sin LHA )
zs

zs zs zs cos H zs

zs

II.2.4 THE SPEED V AT WHICH THE EARTH’S CENTER REVOLVES AROUND THE SUN
zs

The speed V at which the center of the Earth revolves around the Sun can be calculated

zs

from the Kepler second law: r 2 d  C
dt 1

42

We can write r ( r d ) m  C m where: m the mass of the planet.

dt 1

r d  V cos(  90o )  V sin(180o  ) so
dt zs zs

(17*) rV m sin(180o  )  C m
zs 1

The left-hand side of the equation (17*) expresses the modulus of the planet’s angular

momentum (Fig. 9). From the equation ( 17*) we obtain:

C where: C  2  a 2 (1 e2 ) relationship (2.12),
V 1 , 1 T 1e2

zs r sin rg

r  a(1 e2 ) the value of the radius vector,
1 e cos relationships (2.7 - 2.10),
angle 

Hence T stellar year.

rg

(2.35) V  2  a(1 e cos )
zs T 1 e2 sin

rg

 
II.3 THE VELOCITIES V AND V  V AT WHICH THE SUN CENTER MOVES WITH

se se1 se

RESPECT TO THE AETHER

Fig. 11  
 The coordinates of the vectors V and V  V (declinations, right ascensions).

The V  se se1 se
and V vectors are also the velocities of the Earth’s centre.
se
se1

43

SYMBOLS IN FIG. 11:

0 the center of the globe,

1 plane of the celestial equator (its projection),

1 a the celestial equator,

2 plane of the ecliptic (its projection),

 the inclination of the ecliptic to the equator,

PB the Aries point,
 Vse
Vse1  Vse the velocity at which the Sun center moves with respect to the aether,

 se the velocity at which the Sun center moves with respect to the aether,
 se1 
right ascension of the Vse velocity,

right ascension of the V  V velocity.
se1 se

Vector Modulus of the Right ascension of Declination of the
vector the vector vector
 Vse
Vse   270o   90o  
 Vse
Vse1 se se

  90o   (90o   )

se1 se1

TABLE 11 (refers to Fig. 11)

The following relationship specifies the speed of the Sun’s center relative to the aether,

expressed with respect to the speed of light C0 :

0 ≤ V / C  1.12104 (1.127).

se o

II.3.1  VELOCITY
AZIMUTH AND THE ALTITUDE OF THE V
 se
The Local Hour Angle LHA of the V velocity:
se se

(2.36) LHA  GHAaries   
se  se

The altitude H of the V velocity:
se se

(2.37) H  arcsin(cos  cos  cos LHA  sin sin)
se  se se se

The azimuth of the V velocity, calculated within the range from 0 to 360o starting from the
se

northern point of the horizon is:

sin A   cos  se sin LHA

se cos H se

se

sin   sin H sin
cos A  se se

se cos H cos 
se

Let us introduce the following symbols:

sin   sin H sin
(2.38) d se se , ( = )
(2.39) d cos A
se cos H cos  se
se

se

z d /|d | , Ase  900 , Ase  2700 . Therefore
se se se

(2.40) A  90o (3  z )z arcsin ( cos  sin LHA ).
se

se se se cos H se

se

44


II.3.2 THE AZIMUTH AND THE ALTITUDE OF THE V VELOCITY

se1


The Local Hour Angle LHA of the velocity V  V :

se1 se1 se

(2.41) LHA  GHAaries   
se1  se1

The altitude H of the V velocity:
se1 se1

(2.42) H  arcsin(cos  cos  cos LHA  sin sin)
se1  se1 se1 se1

The azimuth of the V velocity is calculated within the range from 0 to 360o starting from the
se1

northern point of the horizon as follows:

sin A   cos  se1 sin LHA

se1 cos H se1

se1

sin   sin H sin
cos A  se1 se1

se1 cos H cos 
se1

We introduce the following notations:

sin   sin H sin
(2.43) d se1 se1 , ( = )
(2.44) d cos A
se1 cos H cos  se1
se1

se1

z d /|d | , Ase1  900 , Ase1  2700 . so
se1 se1 se1

(2.45) A  90o (3  z )z arcsin ( cos  sin LHA )
se1

se1 se1 se1 cos H se1

se1

The angles ,  are the geographical coordinates of the U point (Fig. 8) in which the

interferometer is located.
The previously introduced relationships (2.31), (2.34), (2.37), (2.40), (2.42) and (2.45) for
calculating the altitudes and the azimuths of velocities relate to the astronomical horizon
plane which runs through the globe center.
This plane is perpendicular to the vertical line running through the U (, ) point (Fig. 8).

The abovementioned relationships apply as well as to the horizon plane which runs through
the U (, ) point and is also perpendicular to the vertical line.

II.4 SUM OF VELOCITIES IN THE HORIZONTAL SYSTEM

Let us introduce a rectangular system of coordinates O’EQW (Fig. 12) with the two axes O’E
and O’Q on the horizontal plane which runs through the point U (, ) . The O’E axis coincides
with the Nu Su line. The O’W axis coincides with the vertical line which runs through the point
U (, ) (Fig. 8).

45

Fig.12 The rectangular system of coordinates O’EQW


The V ' ,V ' ,V ' vectors represent the projections of these vectors on the horizon plane

zs se se1

which runs through the point U (, ) .

The coordinates of the velocities: 0]
V  [ 0, V,
 r rq V]
V [ V , V ,
zs zse zsq zsw

V [ V , V , V]
 se see seq
sew
V [ V , V ,
se1 se1e se1q V]

se1w

(2.46) Vrq  Vr  R cos  (2.3)

(2.47) V  V cos H cos A (2.31), (2.34)
(2.48) zse zs zs zs

V  V cos H sin A
zsq zs zs zs

(2.49) V  V sin H
(2.50) zsw zs zs
(2.51)
V  V cos H cos A (2.37), (2.40)
see se se se

V  V cos H sin A
seq se se se

(2.52) V  V sin H se
(2.53) sew se
(2.54)
V  V cos H cos A (2.42), (2.45)
se1e se se1 se1

V  V cos H sin A
se1q se se1 se1

(2.55) V  V sin H se1
se1w se

II.4.1 
VELOCITY V  V
(2.1)
  0  01  46
V V V V

01 r zs se

 V, V, V]
The coordinates of the velocity V  [
01e 01q 01w
01

(2.56) V V V

01e zse see

(2.57) V V V V

01q rq zsq seq

(2.58) V V V
01w zsw  sew
The modulus of the velocity V :
01

(2.59) V  V 2 V 2 V 2
01 01e 01q 01w

The altitude H and the azimuth A of the V velocity:
01 01 01

(18*) V  V cos H cos A
01e 01 01 01

(19*) V  V cos H sin A
01q 01 01 01

(20*) V  V sin H
01w 01 01

From the equation (20*) the altitude H of the velocity V can be determined:
01 01

(2.60) V
H  arcsin 01w

01 V

01

V 01q

From the equation (19*) we obtain: sin A 
01 V cos H
01 01

Let us introduce the following notation:

(2.61) z V / |V | , A01  900 , A01  2700 .
01 01e 01e 

The azimuth A of the velocity V calculated within the range from 0 to 360 o starting
01 01

from the northern point of the horizon is:

A  90o (3  z )  z arcsin V 01q

(2.62) 01 01 01 V cos H

01 01

 (2.2)
II.4.2 VELOCITY V  V V]

 0  02  02w
V V V V

02 r zs se1
The coordinates of velocity V :

 02
V [ V , V ,

02 02e 02q

(2.63) V V V

02e zse se1e

(2.64) V V V V

02q rq zsq se1q

(2.65) V V V
02w zsw  se1w
The modulus of the velocity V :
02

(2.66) V  V 2 V 2 V 2

02 02e 02q 02w


The altitude H and the azimuth A of the velocity V .

02 02 02

(21*) V02e  V02 cos H 02 cos A02

(22*) V  V cos H sin A
02q 02 02 02

(23*) V  V sin H 02
02w 02

From the equation (23*) the altitude H of the vector V can be determined:
02 02

47

(2.67) V
H  arcsin 02w

02 V

02

V 02q

From the equation (22*) we obtain: sin A 
02 V cos H
02 02

Let us introduce the following notation:

(2.68) z V / |V | , A02  900 , A02  2700 .
02 02e 02e

The azimuth A of the velocity V calculated within the range from 0 to 360o starting from
02 02

the northern point of the horizon is:

A  90o (3  z )  z arcsin V 02q

(2.69) 02 02 02 V cos H

02 02

Parameter The value of the parameter

a 149597103 km
e 0.01671

 23o.439  0.4090877 rad

p 50".292

T 365 d .256366

rg

T 365 d .242199

rz

R 6378.1 km

 7.292115105 rad/s

TABLE 12

Table 12 gives the values of astronomical parameters, used in a computation program,

referred to as PROGR AM Vo in Chapter IV, to calculate the coordinates of velocities:
V, V01 (2.1), V02 (2.2).

zs

II.5 AN EXAMPLE  

We are to calculate the coordinates of the V , V (2.1) and V velocities (2.2) at the U
zs 01 02

point (Fig.8) with its geographical coordinates   50o34' ,   21o41' on 15th December 2009

at 10.30 UT. The coordinates of the vectors should be determined in a horizontal system.

In order to solve the problem we will use the previously mentioned PROGRAM Vo (see
Chapter IV). In addition to the astronomical quantities, contained in Table 12 and introduced
into the program, we also need to introduce the values of the angles corresponding to the
case-specific time, namely:

- right ascension  of the Sun,
s

- Greenwich Hour Angle of the Aries point GHAaries ,
- angle  (true anomaly).
The values of both i.e. the sun right ascension and the Greenwich Hour Angle of the Aries
point can be found in the astronomical annual and they read as follows:

 s  263o0'.5  263o.008333
GHAaries  241o42'.9  241o.715000

48

The value of the angle  can be calculated from relationships (2.13) - (2.21).

Astronomical winter duration time T .

z

Astronomical winter started on 21st December 2008 at 12.04 UT.

Astronomical spring started on 20th March 2009 at 11.44 UT.

Hence the astronomical winter duration time T in the years 2008 - 2009 equals:

z

Tz  88d 23h40m  88.986111 days .
Precession (in longitude) during astronomical winter:

from the relationship (2.16) p  (Tz / Trz )50''.292  12''.252  0o.003403 .

From the equation (2.17) 88.986111  t(90o  0o.003403 1)  t(3600 1) and with the use of

the method of successive approximation, the value of the angle  can be calculated:
1

1  13o.212402

From the relationship (2.18): Ta  t(1)  12.966631 days .

Tb is the time that elapsed from the start of the 2008 astronomical winter until the end of the

2008 calendar year i.e. Tb  10d11h56m  10.497222  days
hence Ta Tb  2.469409 days .

180o   360o
The time t ( ) that elapses from the start of the 2009 calendar year until 10.30 UT on 15th

4

December 2009 will amount to:

t4 ( )  348d10h.5  348.437500 days .

From the equation (2.21) we have:

348.437500  Trg  t( )  2.469409 and with the use of the method of

successive approximations, the value of the angle  can be calculated:

  340o.353014
Having introduced to PROGRAM Vo the values of the following angles:

  50o.566666  s  263o.008333

  21o.683333 GHAaries  241o.715000

and    340o.353014 
we obtain the coordinates of velocities V , V and V in the horizontal system.
zs 01 02

THE RESULTS OF CALCULATIONS:

 Vzs  30.257974 km / s
Vector V H zs  2o.506181

zs Azs  270o.768878

 V0  V01  44.793772 km / s  V0  V02  44.773691 km / s
Vector V H 01  47o.951082 Vector V H   43o.141687

01 A01  288o.751884 02 02

(2.1) (2.2) A02  254o.313146

49

CHAPTER III

NEWTON’S SECOND LAW OF MOTION

Michelson-Morley experiments and the values of the interference fringe shifts, calculated
from the mathematical model, confirm the premise of the existence of the aether and the
applicability of the Galilean transformation.
Therefore let us apply the Galilean transformation.

Fig. 13

Then let us introduce two rectangular coordinate systems (Fig. 13).

1) Preferred absolute inertial rectangular coordinate system 1, named
OXoYoZo, motionless with respect to the aether.

2) An inertial system 2 i.e. the O’EQW system that is in motion relative to
the system 1 with constant velocity V .

o

Axis O’E is parallel to axis OXo.
Axis O’Q is parallel to axis OYo.

The times in both inertial systems 1 and 2 are equal: t2  t1  t .


The velocity V of particle P relative to the inertial system 1 (Fig. 13) equals:
1  
(3.0) V V V ,
 1o2
where: V the velocity of particle P in the inertial system 2.
2

The accelerations of particle P in inertial system 1 and 2 respectively:

   
dV dV d(V V ) dV
  , 1 o 2    , then    .
1 a 2 a a2 a1

dt 1 dt dt dt 2

50


Click to View FlipBook Version