The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

THERE ARE LECTURE NOTES AND TUTORIAL QUESTIONS AS WELL. STUDENTS PLEASE REFER TO THIS MODUL FOR YOUR LECTURES AND TUTORIAL. BEST REGARDS, YOUR LOVELY MADAM..

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by mdmbilqiskmp, 2021-07-20 02:29:29

MODUL AM015 2021 INTAKE

THERE ARE LECTURE NOTES AND TUTORIAL QUESTIONS AS WELL. STUDENTS PLEASE REFER TO THIS MODUL FOR YOUR LECTURES AND TUTORIAL. BEST REGARDS, YOUR LOVELY MADAM..

AM015/6. POLYNOMIAL

4. The polynomial P(x)  mx3  nx2  2x  3 gives a remainder of 14 when divided by
(x 1) and a remainder 7 when divided by (x  2) .Determines the values of the
constants m and n .

5. The polynomials x3  4x2 - 2x 1 and x3  3x2  x  7 leave the same
remainder when divided by x  p . Find the possible values of p .

6. The remainder of P(x)  x3  2x  r when it is divided by  x 1 , is the same as the
remainder when Q(x)  2x3  x  r is divided by 2x 1 , find the values of r .

1. 15
(a) 3
(b) 20 (c)

8

2. p  3,q  6

3. p  8,q  22

4. 7 20
= 3 , = 3

5. 2,3

6. 1
8

TUTORIAL 3 OF 9

1. When P x  3x3  px2  qx  3 is divided by x2  x  2, the remainder is 8x 1 . By

using the remainder theorem, find the value of p and q. Hence obtain the quotient.

2. Given that ax  b is a remainder when polynomial 2x3 5x2  28x 15 is divided by
x2 1 . By using the remainder theorem find the value of a and b

3. Find the value of p and q for the following question

(a) When x3  px  q is divided by x2  3x  2, the remainder is 4x 1.

(b) If a polynomial P  x is divided by  x  2 the remainder is 2 , and when it is
divided by  x  3 , the remainder is 3 . Given that the remainder when P  x is
divided by  x  2 x  3 is px  q

Page 2 of 8

AM015/6. POLYNOMIAL

1. p  4,q  3 Qx  3x 1

2. a  26,q  10

3. a) p  3,q  5 b) p  5,q  12

TUTORIAL 4 OF 9

1. Given that  x  3 is a factor of polynomial P  x and the remainder when P  x is

 divided by  x  3 is 12 . Find the remainder when P x is divided by x2 9 .

2. The polynomial P x is given by P x  x3  3x2  2x  6 .
(a) Use the factor theorem to show that  x  3 is a factor of P  x

 (b) Write P x in the form  x 3 ax2  bx  c , giving the values of a, b and c

(c) Hence solve P x  0.

3. Given that 2x 1 is a factor of P x  8x3  4x2  kx 15 ,

(a) find the value of k,
(b) factorise P(x) completely

4. Find all the possible zeroes of the polynomial if one of the zero is given

a) P(x)  x3  2x2  5x  6 ; -3

b) P(x)  x3  x2  4x  4 ;2

c) P(x)  2x3  5x2  x  6 ; -2
;4
d) P x  6x3  23x2  6x 8

1. Rx  2x  6

2. a) shown b) a = 1 , b = 0 , c = -2 c) - 2 , 2 , 3

3. a) k  34, b) P(x)  2x 12x  52x 3

4. a) 3,1,2 b) 2,1, 2 c) 2,  3 ,1 d)  2 , 1 , 4
2 32

Page 3 of 8

AM015/6. POLYNOMIAL

TUTORIAL 5 OF 9

1.Given (x -1) and (x  2) are factors of the polynomial S(x)  2x3  px2  qx  2 .

Find the values of constants p and q .

2. Given polynomial P(x)  mx3  nx2 1 with (2x 1) is one of the factors and P(x) has a
remainder of 4 when divided by (x 1) . Determine the values of m and n . Hence,
factorise P(x) completely.

3. Find the third degree of polynomial if P1  P2  0, P1  4 and P2  28.

1. p=1 , q = -5

2. m  2,n  3, P(x)  (2x 1)(x 1)(x 1)

3. P x  3x3  4x2 5x  2

TUTORIAL 6 OF 9

1. Express the following in partial fractions

7x 12 2x  3
a) x2  3x  2 b) x3  6x2 11x  6

2. Factorize 2x3  x2  2x 1 . Hence express 2x2  3x  4
2x3  x2  2x 1

1. a) 7x  12 52
x2  3x  2 (x  1) (x  2)

2x  3  1 1 3
x1 (x  2) 2(x  3)
 b)
x3  6x2  11x  6 2

2. x 1x 12x 1 2x2  3x 4  9  1  8
2x 1
 x 1x 1 2x 1 2  x 1 2  x 1

Page 4 of 8

AM015/6. POLYNOMIAL

TUTORIAL 7 OF 9
1. Express the following in partial fractions

a) 18x  9
(x  2)(x 1)2
3x 1

b)

x 2x 12

2. Given f(x)  x3  5x2  8x  4
a) Show that (x -1)is a factor of f(x).

b) Find the value of a such that f(x)  (x -1)(x - a)2

c) Hence, express 2x2 1 as partial fractions

f (x)

3. Given f  x  2x3  5x2  x  6
(a) show that  x  2 is a factors of .

 (b) Find a, b and c such that f x  x  2 ax2  bx  c

x4

(c) Express f  x as a partial fraction

1. a) 18x  9  5  5  3
(x  2)(x  1)2 (x  2) (x  1)  1)2
(x

b) 3x 1  1  2  5
x 2x 1
x 2x 12 2x 12

2. a) Shown
b) a =2
c) 2x2 1  1  1  7
f (x) x 1 x  2 (x  2)2

3. (a) shown (b) a  2,b 1,c  3

 x  2 x4  2x  3  3 2 2  3 1  2 3
x 2x 
x 1 x 1

Page 5 of 8

AM015/6. POLYNOMIAL

TUTORIAL 8 OF 9

4
 1. Express in the form of partial fraction.
 x 1 x2  9

2. Given P x  10x2  6x 11 and Qx  x3  5x2  8x  4
(a) Show that  x  1 is a factor of Qx.

(b) Factorice Q x completely.

Px
(c) Express Q  x  as a partial fraction.

1. 4   1  1  1
x x x
 x  1  x2  9 2  1 3 3 6  3

2. x 1x  2x  2 Px 15  5 39
Qx x 1 2
(a) shown (b) (c)  x  x  22

TUTORIAL 9 OF 9
1. Express the following in partial fractions

3x2  2x  7 2x  3
a) (x  2)(x2 1)
b) x 1x2  4

2. Express 9x as partial fraction.

x3  3x2  4

 1.
(a) 3x2  2x  7  3  2 (b) 2x  3   1  x 1
(x  2)(x2  1) (x  2) (x2  1)
x 1 x2  4 x 1 x2  4

2. 9 9
3 + 3 2 − 4 = ( − 1)( + 2)2

9 11 6
( − 1)( + 2)2 = − 1 − + 2 + ( + 2)2

Page 6 of 8

AM015/6. POLYNOMIAL

EXTRA EXERCISES

1. A polynomial P(x)  2x3  mx 2  nx  8 gives a remainder of (6x  4) when divided by

(x 1)x  2. Find the values of m and n .

2. Given f (x)  x3  3x2  x 1 and q(x)  x2  3x  5
a) Show that (x  1) is a factor of f (x) .

b) Find the values of a, b and c such that  f (x)  x 1 ax2  bx  c by using long

division
c) Hence, express q(x) as partial fractions.

f (x)

3. The polynomial P(x)  mx3  nx2  2x  3 gives a remainder of 14 when divided by

(x 1) and a remainder 7 when divided by (x  2) .Determines the values of the

constants m and n .

4. Given P(x)  7x2  5 and Q(x)  x3  2x2  x  2 .

a) Show that (x  2)is a factor of Q(x)

b) Factorise Q(x) completely

c) Express P(x) as partial fractions.

Q(x)

5. a) When a polynomial P(x) is divided by (x  2) and (x  3) , the remainders are 5 and
10 respectively. Find the remainder R(x) , when P(x) id divided by (x  2)(x  3) , where
R(x)  ax b , and a and b are constants.

b) State the factors of 2x2  5x  3. Hence, express 44 10x
fractions. (x  3)(2x2  5x  3) as partial

6. Given a polynomial of degree 3, ( ) = ( + 2)( − 3) ( ) + ( + ), where a and b are
constants.

(a) P(x) has the remainder -18 and 17 when divided by ( + 2) and ( − 3) respectively.
Find the values of a and b, state the remainder when ( ) is divided by ( + 2)( − 3).

(b) Let ( ) = + . Use the values of a and b obtained in part 1(a) to determine Q(x) if
the coefficient of 3 in ( ) is 2 and (4) = 42.

(c) Express the following in partial fractions.
− 12

( + 2)( 2 + 3)

Page 7 of 8

AM015/6. POLYNOMIAL

ANSWERS CH6: EXTRA EXERCISES FOR POLYNOMIAL.
1 m  8, n  8

2. b) a 1,b  2,c  1 , c) q(x)  3  5x  7
f (x) 2(x2  2x 1)
2x 1

3 m  7 , n  20
33

4 a) shown, b) Q(x)  (x  2)(x 1)(x 1) c)

7x2  5  11  2  6

(x  2)(x 1)(x 1) x  2 x 1 x 1

5 a) R(x)  x  7 b) 44 10x  2  2  4

(x  3)(2x2  5x  3) x  3 (x  3)2 2x 1

6 a) = 7, = −4, = 7 − 4

b) ( ) = 2 − 5

c)

− 12 −2 2 − 3
( + 2)( 2 + 3) = ( + 2) + ( 2 + 3)

Page 8 of 8

AM015/7. Limits

CHAPTER 7: LIMITS

LECTURE 1 OF 5
At the end of lesson, student should be able to :

7.1 a) State limit of a function f(x) as x approaches a given value a, lim f (x)  L
xa

7.1 b) State the basic properties of limit

7.1 LIMITS
Definition of Limit
A function f(x) is said to approach a constant L as a limit when x approaches a as below,

lim f (x)  L

xa

We are interested not in the value of f (x) when x  a but in the behavior of f(x) as x

comes closer and closer to a.

Means that as x gets closer to a, but x  a , f(x) gets closer to L, read as “the limit of f as

x approaches a is L”.

Notation means x approaches a from the right
means x approaches a from the left
x  a means x approaches a from both sides
x  a

x a

The limit of a function can be evaluated by using different method

(1) Intuitive method
(2) By using properties

(1) Intuitive Method

Computation of a limit (intuitive approach)
(a) A table of values of x versus f(x) is drawn up
(b) The values of f(x) are observed to see whether they approach a particular

value.
Step 1 : Select several values of x close enough to a.

Step 2 : Observe the pattern of corresponding f  x values

Step 3 : Then guess the value of f  x when x is approaching a.

Page 1 of 15

AM015/7. Limits

Example 1

Find lim (x2 1) =
x0

Solution

xapproaching0 from the left xapproaching 0 from the right
0 0.001 0.25 0.5
x -1 -0.5 -0.25 -0.001 1
f(x)= x2+1 y

x

(2) By using properties
Properties of limit

Properties of Limits Example
(1) If f (x) = c , where c is a constant
lim 5 
lim f (x)  lim c  c
x3

xa xa

(2) If f (x) = x, then lim x  a lim x 
xa
x3
(3) If f (x) = xn, where n is a positive integer (n
lim x3 
> 0), then lim x n  a n
x a x2

4 lim f (x)  g(x)  lim f (x)  lim g(x) lim(x5 10) 
xa xa xa
x1

5 lim f (x).g(x)  lim f (x).lim g(x) lim(x2  5)(x 1) 
xa xa xa
x4

Page 2 of 15

AM015/7. Limits

(6) If c is a constant, then lim 5x3 

lim c. f (x)  c.lim f (x) x10

xa xa

7 lim f (x) lim f (x) provided lim x
xa g(x)  xa x2 10
x5
lim g(x)
xa

lim g(x)  0

x a

(8) If f is a polynomial function, then lim(3x2  4x 10)

lim f (x)  f (a) x2

xa lim x  4

(substitution) x0

(9) lim n f (x)  n lim f (x) where n is a
xa xa

positive integer and f(a)>0

Note: By substituting a in the lim f(x)  L , then L is the exact value of f(x) when x = a and
xa

the approximate value of f(x) when x approaches a, i.e. the limit is equal to exact
value.

Limit of the Rational Function

1) For a rational function, the limit can be found by substitution when the denominator is not

zero. If f(x) and g(x) are polynomials and c is any number, then

lim f (x)  lim f (x) f (c) provided g(c)  0

xc

xc g(x) lim g(x) g(c)
xc

Example 2

Find the limits (if exist)

a lim 1 b lim 3x  4
x2
x1 x3 x  2

EXERCISE

Find the limits of b 2x2  x  3
x3  4
a  lim x2 x4 lim
x2  2x 1
x2 x3

Page 3 of 15

QA016/7. Limits

LECTURE 2 OF 5

At the end of lesson, student should be able to :

lim f (x)
7.1 c) Find xc
lim g(x) when lim f (x)  0 and lim g(x)  0
xa xa

xc

*Use the following methods: i. factorisation; and ii. multiplication of conjugate

lim f (x) 0

2) If xc (indeterminate form), this function is undefined when x = c, but its limit may

lim g(x) 0
xc

exist, then we use:

(i) factorization method

(ii) multiplication of conjugates method

(i) Finding limit using factorization method
Step 1: Factorize the numerator and denominator and
Step 2: Simplify common / like factor

Example 1 blim x2  x  6
Find the limits (if exist)
x3 3  x
a lim x2  9

x3 x  3

 c  lim x3  8  d  lim e2x 1
x2  4 ex 1
x2 x0

Example 2

If f (t) = 2t2 + 1, determine the value of lim f (t)  f (2) if exists
t2 t  2

Page 4 of 15

QA016/7. Limits

(ii) Finding limit using multiplication of conjugates method for functions related to surd
Step 1: Multiply both numerator and denominator by the conjugate of numerator or

denominator.
Step 2: Simplify the fraction.

Example 3 blim x  2
Find the limits
x2 x  2  2
a lim 2  x 1

x1 x 1

clim x 1

x1 2( x 1)

EXERCISE 2. Find the limits
1. Find the limits (if exist)
 a  lim  x  3
a lim 4x2  x  3 x3
x 3
x1 x 1
b lim1 x 1
blim 2x2  5x  2
x0 x
x2 x  2

c lim (3  t)2  9

t0 t

Page 5 of 15

QA016/7. Limits

LECTURE 3 OF 5

At the end of lesson, student should be able to :

7.1 d) Find one-sided limits. i. lim f (x)  L ; and ii. lim f (x)  M
xa xa

7.1 e) Determine the existence of the limit of a function. * lim f (x)  lim f (x)
xa xa

**Exclude: End point limit such as lim x, x  0 , where lim x  0 but lim x does
x0 x0 x0

not exist.

One - Sided Limits f (x)  x2  9
Consider the graph below x3

y

6

3

3x

left hand limit Right hand limit
lim f (x)  6 and lim f (x)  6
x3 x3

One sided limit
Left hand limit Right hand limit

lim f (x)  M lim f (x)  L

xa xa

Example 1 b lim(x  2) 
Find x3

a lim(x  2) 
x3

Page 6 of 15

QA016/7. Limits

Existence of Limits

lim f (x)  lim f (x)
Limit exist if and only if xa xa

lim f (x)  L , lim f (x)  L
xa
xa

lim f (x)  L
xa

Example 2

If f (x)  3x2 1, find the left-hand and right hand limit of f at x= 4 and hence determine

lim3x2 1

x4

Estimating a limit from a graph

Example 3
Use the graph below to estimate each limit at x= -1, 0, 2, 4

y

2

1

02 4 x

Page 7 of 15

QA016/7. Limits

Example 4

y 
2

1
x

1 2 34

The above diagram shows the graph of the function f. Find

lim f (x)

(a) x1

lim f (x)

(b) x2

lim f (x)

(c) x3

Limit for Piecewise Function

Example 5

 4  x 2 ;x 1 lim h(x).
(a) Given h( x) 2  x 2 . Find x1
;x 1

Page 8 of 15

QA016/7. Limits

f (x)  2 ; x 1
5 ; x  1. Find lim f (x) .
(b) Given
x1

Example 6

ax  3 ;x2
If f (x)  bx2  c ;2 x4
;x4
8

Determine the value of a, b and c given that lim f (x)  5 , lim f (x) and lim f (x) exist.
x 2 x2 x4

Page 9 of 15

Limit for Absolute Values QA016/7. Limits

Example 7 b lim 3 x 1
Find the limit (if exist)
x1 x 1
alim x 3
x 3

clim (x  3)(x  2)

x2 x  2

EXERCISE b lim  x2 1 
x2
1. Find

a lim  x2 1 
x2

2. Given

f  x  2x x4 lim f (x)
2x . Find
 3 x4
x4

f ( x)  3x  3 ;xk
 ;xk
3. If  x2 +5

Determine the values of k if lim f (x) exist.
xk

Page 10 of 15

QA016/7. Limits

LECTURE 4 OF 5

At the end of lesson, student should be able to :

7.1 f) Find infinite limits. * i. lim f (x)   and ii. lim f (x)   *Sketch of the
xa xa

graphs may be necessary to explain (i) and (ii). * lim f (x)   and lim f (x)  
xa xa

are undefined limits.

7.1 g) Find limits at infinity i. lim f (x)  L and ii. lim f (x)  M.
x x

Infinite Limits

Consider the graph of f x  1 , as x approaches 0, x2 also approaches 0, and 1 becomes
x2 x2

very large.

x f x

1 1
 0.5 4
 0.1 100
 0.01 10 000
 0.001 1 000 000

f  x  1 From the graph our informal definition is
x2
i)as x  a , f(x) increases without bound, then we
a write lim f (x)  
a
xa

ii) as x  a , f(x) increases without bound, then
we write lim f (x)  

xa

iii) Therefore lim f (x)   (undefined)
xa

From the graph our informal definition is

i)as x  a , f(x) decreases without bound, then we
write lim f (x)  

xa

ii) as x  a , f(x) decreases without bound, then
we write lim f (x)  

xa

iii) Therefore lim f (x)   (undefined)
xa

Page 11 of 15

a QA016/7. Limits

Example 1 From the graph our informal definition is
Find one sided limit
i)as x  a , f(x) increases without bound, then we
1 write lim f (x)  
(a) lim
xa
x2 x  2
ii) as x  a , f(x) decreases without bound, then
Example 2 we write lim f (x)  
Find limit if exist
xa
(a) lim 1
x1 x 1 iii) Therefore lim f (x) does not exist.
xa

1
(b) lim

x2 x  2

(b) lim 2 1 22
x
x2

Limits At Infinity
y

y =L
x

Page 12 of 15

QA016/7. Limits

1. (a) If x moves increasingly far away from the origin in the positive direction (i.e. x   )
and f(x) gets closer to L, then we write lim f (x)  L

x

(b) If x moves increasingly far away from the origin in the negative direction (i.e. x   )
and f(x) gets closer to L, then we write lim f (x)  L

x

(c) In case 1(a) and 1(b), L is known as the limit to infinity. L must be a real number.

2. If lim f (x)   or lim f (x)   , we say that the limit does not exist.
x x

Limit at infinity for lim  f (x)  g(x)
x

Example 3 (b) lim 1 x2
Find the limit x

a lim(ex  2)
x

(c) lim (2  x)
x

EXERCISE

1. Find the limits (if exist)

(a) lim x  3 (b) lim x2  x  2
x3 x  3 x2  2x 3
x3

2. Find

 a x2 3 b
lim (  ) lim x2  x 10 
x  x2 x

Page 13 of 15

QA016/7. Limits

LECTURE 5 OF 5

At the end of lesson, student should be able to :

7.1 h) Determine lim f (x) when lim f (x) and lim g(x) are undefined. *Emphasise i.
x g(x) x x

lim  1   0 and ii. lim  1   0 for n>0. *Exclude: Vertical and horizontal asymptotes.
x xn  x xn 

Limit at Infinity for Rational Function

lim 1 0 lim 1 0
xn xn
1. For n >0 , x and x

Example 4

Find lim f (x) and lim f (x) .
x x

(a) f (x)  1 (b) f (x)  3 5
x2 x2 x3

2. If lim f (x)   , then we will have to divide the numerator and denominator by the
g(x) 
x

highest power of x of the denominator.

Note 

:

is an indeterminate form.

Example 5

Find

 a  lim x2 1 b lim  x2 
2x2 1 x  
x  3x 1 

Page 14 of 15

Example 6 QA016/7. Limits

Find limit if (exist) b lim x2  2

a lim x 1 x 3x  6
x x2 1

3. For the function, if lim  f (x)  g(x)     (indeterminate form)
x
i) Multiply by the conjugate
ii) Divide the numerator and denominator by the highest power of x of the denominator.

 Example 7
lim 4x2  x  2x 

Find x

EXERCISE

Find

 a  lim 2x3  x2  3 b lim x
x3  x2 x  3x2 1
x

 c  lim x2 1 d lim x2  x  6
2x2 1 3 x
x x

e lim x 1 f  lim x2  2
x x2 1
x 3x  6

Page 15 of 15

AM015/ 7.Limit

TUTORIAL 1 OF 6

Learning outcomes:

7.1 a) State limit of a function f(x) as x approaches a given value a, lim f  x  L
xa

7.1 b) State the basic properties of limit

1. Evaluate the following limit, if exist

(a) lim12 (b) lim 3x  2
x2
x5

(c) x2 1 (d) 3x2  2
x2 1 x2  4
lim lim

x2 x 2

(e) lim y3 (f) lim x2  7x 10
3y  x5 x  3
y3 y3 9

(g) lim h (h) lim  y  35
h4 h  4 y4

   2. If lim f x  2 and lim g x  64 , find
x1 x1

(a) lim gx  4 lim fx
x1 x1

fx
 (b) lim

x1 g x

(c)  limf x g x   f x 2 

x1

 f x  5
 3. If lim
x4 x  2  1 , find lim f x
x4

ANSWER

1. (b) 8 (c) 5 2 (e) 0 (f) 0 (g) 1 (h) 1
3 3
(a) 12 (d)

3

2. (b) 1 (c) 20
(a) 56 32

3. 7

Page 1 of 9

AM015/ 7.Limit

TUTORIAL 2 OF 6

Learning outcomes:

lim f  x lim f  x  0and lim g x  0
7.1 c) Find xa when
xa xa
lim g  x
xa

*Use methods: i. factorisation

ii. multiplication of conjugate

1. Evaluate the following limit, if exist

(a) lim x2  4x  5 (b) lim 2x2  x  1
x1 x  1 x2  1
x1

(c) lim x3  4x2  2x  8 (d) lim x3  27
x4 x4 x3 x  3

(e) lim x2 (f) lim p  9
x3 8 p9 p  3
x2

(g) lim x  7 (h) lim 2  x
x7 3x  4  5 x4 4  x

(i) lim x2  25 (j) lim x  1  1
x5 2x  1  3 x2 x  2

(k) lim t 2  81 (l) x  2  2x
t9 3  t x2  2x
lim

x2

1. (a) 6 (b) 3 ANSWER (d) 27 (e) 1
(f) 6 2 (c) 18 (i) 30 12

(k) 108 (g) 10 (h) 1 (j) 1
3 4 2

(l)  1
8

Page 2 of 9

AM015/ 7.Limit

TUTORIAL 3 OF 6

Learning outcomes:

7.1 d) Find one-sided limits. i. lim f  x  L ; ii. lim f  x  M .
xa xa

7.1 e) Determine the existence of the limit of a function. *

lim f x  lim f x
xa xa

3x2  6 , x2

.

x2
 1. x 
Given that f  8  x, Evaluate lim f x , if exists.

x2

x  4 x  4
 2.  4  x
Given f (x) x  4 . Evaluate lim f x , if exists.
x4

3. Determine the limit (if exist) at the given x

(a) f x  x  2 at x  2
(b) h x  3 2x  4 at x  2

(c) f  x   x  3 x  2 , at x  2

(x  2)

x2  2 , 1  x  2
4. Given the function as, f (x)  1 2x , 2  x  4 determine the limits at (if exist) ;

 x ,x4

(a) x = 2 (b) x = 4 (c) x = 9

 2  x, x  1

5. Given f  x    x2 1 1 x  2 Evaluate each of the following limits, if exists.
 2x 1 2x4.

 1x8 x4
 4

State the reason if the limit does not exist.

(a) lim fx (b) lim fx (c) lim fx (d) lim fx
x1 x2 x3 x4

ANSWER

1. 6

2. does not exist

3. (a) 0 (b) 3 (c) does not exist

4. (a) does not exist (b) does not exist (c) 3

5. (a) does not exist (b) 5 (c) 7 (d) 9
Page 3 of 9

AM015/ 7.Limit

TUTORIAL 4 OF 6

Learning outcomes:

7.1 e) Determine the existence of the limit of a function. * lim f  x  lim f  x
xa xa

 2x 4 xk
kx  5k, xk
 1.
Given f (x)  . Find the value of k>0 if lim f x exist.

xk

2. Determine the values of A and B if the limit of f(x) exist at the points x = -1 and x = 4

4 x  1
f(x)  Ax  B
1 x  4

Ax2  Bx  1 x  4

 x3  c x0
Given f (x)  ax2  b
3. 0  x  2 determine the value of c if lim f (x)  2 . Find
x0
 2x  2 x2


a and b if lim f (x) and lim f (x) exist.
x0 x2

 x ,x 1

4. Given f  x   3 , x  1 . Determine the limit at x 1 (if exist)

2x 1 , x 1

5. Evaluate limit at x 1 for the function f  x   2x 1 , x 1
 , x 1
 0

9  x2 x3
x3
6. A function is defined as f  x  x6 3
162x  54x2
 x3  27 x3

Determine the limit (if exist) at x=3

1. 1 c=2 ANSWER
3. a = 2 , b = -2 2. A= 3,B=-7
5. 1 4. 1
6. -6

Page 4 of 9

AM015/ 7.Limit

TUTORIAL 5 OF 6

Learning outcomes:

7.1 f) Find infinite limits. * i. lim f  x   and ii. lim f  x   .
xa xa

   7.1 g) Find limits at infinity i. lim f x  L and ii. lim f x  M
x x

1. Find the limits (if exist):

2  1 2
 1 x 1
3 x2
 alim  x   9 (b) lim x 

x3 x1

(c) lim 3  x2 (d) lim x  4
x4 x 2  16 x1 x2  2x  3

2. For the graph of the function given below, find the limit (if exist)

f(x)

2

1

012 3 4x

(a) lim f x (b ) lim f  x (c) lim f  x

x 1 x2 x 3

3. Use the graph below to determine the indicated limits

y

4

-4 -2 1 4x

-1

-2

a) lim f (x) b) lim f (x) c)lim f (x) d)lim f (x) e) lim f (x)
x4 x2 x1 x4 x
Page 5 of 9

AM015/ 7.Limit

 x , x 1

 x 1, 1  x  3
4. The function f(x) is defined as f (x)  
8  2x, 3  x  6
 4, x  6

 Find (i) lim f x (ii) lim fx (iii) lim fx
x1 x x3

ANSWER

1. (a)  (b)  (c)  (d) 

2. (a) 1 (b) does not exist (c)  (undefined)

3. (a)  (undefined) (b) does not exist (c) does not exist (d) 2 (e) 2

4. (a) does not exist (b) -4 (c) 2

Page 6 of 9

AM015/ 7.Limit

TUTORIAL 6 OF 6

Learning outcomes:

   7.1 g) Find limits at infinity i. lim f x  L and ii. lim f x  M
x x

   lim f x
 7.1 h) Determine x , lim f x and lim g x are undefined.
lim g x x x

x

1. Find the limits ( if exist):

(a) lim 2t 2 (b) lim 16x2  4 (c) lim x2  4
2 x 4x2  3 x x  2
t  t 6
(e) lim 2x3  x2  1
(d) lim (x  1)2 x 2x3  1 (f) lim 5x3  4x  9
x2  x 1 7  3x3
x 2 (h) lim x2 1 x
x 4x 1
(g) lim 8x 1 (i) lim x2 1
x x2  9 (k) lim 4x3  5x2  1 x 4x 1
x 9x3  x
(j) lim 2x 1  (l) lim x x  2  x
x 4  x2 x

 x3 , x1
 x2  9


Function f is defined as  10  px, 1x3
 2. f x   x2 3x5

 x x5

 2x2  1

(a) Evaluate,

(i) lim fx
x5

(ii) lim fx
x3

(iii) lim fx
x

 (b) Find the value of p if lim f x exists
x3

ANSWER

1. (c)  (d) 1 (e) 1 (f)  5 (g) 8 (h) 1 (i)  1
(a) 2 (b) 4 2 3 44

(j) 2 (k) 2 (l) 1
3

2. (a) (i) 25 (ii)  1 (iii) 0 b) 1
63

Page 7 of 9

AM015/ 7.Limit

EXTRA EXERCISES

SESSION 2017/2018

1. Evaluate each of the following limits, if exists

(a) lim 2x 6 3
x2  2x 
x3

(b) lim 3x3 11x2  x  1
4x  2x3
x

 ax  7, x  k

2. Given f  x   3,  k x 1
 x2 1, 1 x k

3x 1, k  x  5
 16, x5

(a) Find the values of k if lim f  x exist
xk

(b) Hence, by using the value of k >0, find the value of a if lim f  x exist.
xk

SESSION 2018/2019

1. Find lim x  x2  5x
x

 x  4, x  1
2. Given f  x   A, 1 x  B where A and B are constants.
 x  1,
xB

(a) Find the values of A and B if the limit of f x exist at x  1 and x  B

 (b) Hence, find lim f x
x6

SESSION 2019/2020

 3x x3

 2x2  7x  3

 m, x  3
n
1. A function is defined as f x    x 3x5
7

 x7 5x7

 x 7

 p  2 x 7

Where m, n and p are constants.

 (a) Find lim f x
x3

     (b) Determine the values of m and n such that lim f x  f 3  lim f x
x3 x3

   (c) Find the values of p such that lim f x  lim f x
x7 x7

Page 8 of 9

AM015/ 7.Limit

SESSION 2020/2021

1. Determine lim x  9
x9 6  x  3

2. Find lim 2x1 5x
x
7x2  3

 x2  2x 8 x4
 x4
 4x
3. The function is defined as f  x   m

 6x  n x4



Where m and n are constants

If lim f  x  f 4 and lim f  x  f 4 , find the values of m and n.
x4 x4

ANSWERS

SESSION 1 (b)  3 2. (a) 3 4
2017/2018 2
1. (a) (b)
SESSION
2018/2019 2 3
1.  5
SESSION 2. (a) A  5, B  4 (b) 7
2019/2020 2
(b) n 8 m1 (c) p  2  2 7
SESSION 1. (a)  1 35 5
2020/2021 5
2. 2 6 3. n  30 m  6
1.  10
7

Page 9 of 9

AM015/8. Differentiation

CHAPTER 8: DIFFERENTIATION

LECTURE 1 of 5

LEARNING OUTCOMES:

At the end of this topic, student should be able to;
8.1 a) Find the derivative of a function f(x) using the first principle
8.2 a) Apply the rules of differentiation:

i) Basic rules
ii) Sum rules

8.1 DERIVATIVE OF A FUNCTION

In calculus, a branch of mathematics, the derivative of a function is a measurement of how the
function changes when the values of its input change. The process of finding derivative of a
function is called differentiation.

Let say, we have two points, P(x, f (x)) and Q(x  h, f (x  h)) which lies on the curve y  f (x) .
h is use to denote a small increment of length in the direction of the x-axis.

Thus the gradient of the chord is given by Recall: m  y2  y1
x2  x1
P  QN
PN

 f (x  h)  f (x)
xhx

 f (x  h)  f (x)
h

Now, if we move Q nearer to P , say to point Q1 , Q2 ,…, h  0 , then the gradient of the chords
P, PQ1, PQ2 ,…will give better and better approximations for the gradient of the tangent at P
and therefore, the gradient of the curve at P .

Page 1 of 15

AM015/8. Differentiation

By definition,

f ' ( x)  lim  f (x  h)  f ( x) 
 h 
h0

= the gradient of the chord PQ as Q moves nearer to P

=the gradient of the tangent line at P

=the gradient of curve y  f (x) at P

=the derivative of a function f (x) with respect to x

The process of finding derivative y  f (x) using definition f '(x)  lim  f (x  h)  f (x)  is
 h 
h0

called as differentiation using the first principle.

 dy means y differentiated with respect to x .
dx

 The 'd' is the ‘operator’, operating on some function of x . e.g. d  x2   2x

dx dx

 Though we choose to use a fractional form of representation, dy is a limit and it is not a
dx

fraction, i.e. dy does not mean dy  dx
dx

 The common ways to denote the derivative of a function y  f x are as follows:

i. f xread as f prime x

ii. dy read as dydx
dx

iii. y read as y prime

 The differentiation of a function should be with respect to the independent variable for
example, if

i. y  f xthen dy  f x

dx

ii. y  htthen dy  h(t) and so on.

dt

Example 1

Find the derivatives of the following functions using the first principle.
(a) f x  5x  4 (b) y  2x 1x  5

Page 2 of 15

AM015/8. Differentiation

Example 2

If f (x)  4x  2x2 , find f '(x) from first principle. Hence calculate f '(2) and f '(2) .

8.2 RULES OF DIFFERENTIATION

a) Rules of Differentiation
i) Basic Rules
1) The Derivative of a Constant Function (Constant Rule)

If k is a real number, the derivative of

f (x)  k is f '(x) = 0

In other words, the derivative of a constant function is zero.

Example 3 (b) y  3 (c) f (x)  e3
Find the derivatives of

(a) f x  8

2) The Derivative of a function of form xn (Power Rule)

If n is a real number, the derivative of

f x  xn is f x  nxn1

3) The Derivative of a Function of the form kxn (Constant Multiple Rule)

If k and n is a real number, the derivative of
f (x)  kxn is f '(x)  knxn1

Example 4 (b) f x  1
Find the derivatives of
x2
3

(a) y  x 2

Page 3 of 15

AM015/8. Differentiation

ii) The Derivative of a Sum or Difference of Functions (Sum or Difference Rule)

If u(x) and v(x) are differentiable functions, the derivative of
f (x)  u(x)  v(x) is f (x)  u(x)  v(x)
f (x)  u(x)  v(x) is f (x)  u(x)  v(x)

Example 5 (b) g(x)  x3  1 x2  4
Find the derivatives of 2 4x

(a) f (x)  2x2  5 x

Exercise

1. Find the derivatives of the following functions using the first principle.

(a) y  53x ans: -3

(b) y  x2  2x ans: 2x  2

2. Find the derivatives of ans: 0

(a) f (x)   ans: 6

(b) mx  12 3

x x2

2

(c) y  8 x  2 5 1 ans: 8 4  20 x 3
3x2 3 3x3 3
 4x3

Page 4 of 15

AM015/8. Differentiation

LECTURE 2 of 5

LEARNING OUTCOMES:

At the end of this topic, student should be able to;
8.2 a) Apply the rules of differentiation:

iii) Chain rules
iv) Product rules
v) Quotient rules

8.2 RULES OF DIFFERENTIATION

iii) The Chain Rule

If y  f u is a differentiable function of u and u  g(x) is a differentiable function
of x , therefore if y  f gxis a differentiable function of x , then

dy  dy  du
dx du dx

or, equivalently, d  f gx  f gx.gx

dx

Example 1

Find dy if y  u3  3u2 1 and u  x2  2
dx

In general, any composite function of the form y   f (x) n , involving some function f (x)

raised to a rational power n , is called the General Power Rule, and it is a special case of the

Chain Rule.

Let y  un , where u  f (x) ,
Then dy  nun1 , and du  f '(x) ,

du dx

Using the Chain Rule, dy  dy  du
dx du dx

 So dy  nun1  f '(x), substitute u  f (x) , therefore
dx

General Power Rule

 d  f (x) n n f (x)n1  f '(x)

dx

Page 5 of 15

AM015/8. Differentiation

Example 2 (b) y  2
Find the derivatives of
1
 (a) y  2x4  9x  6 4  3x2 1 5

iv) The Derivative of a Product (Product Rule)

If u(x) and v(x) are differentiable functions, the derivative of
f (x)  u(x)v(x) is f (x)  u(x)v(x)  v(x)u(x)

The Product Rule can be written in function notation as
(u v)'  u v'  vu '

Example 3

Differentiate each of the following functions

 (a) y  x 1 13x2 (b) p(x)  (3x2 1)(7  2x)3

(c) f (x)   1 1(x 1)
x 

Page 6 of 15

AM015/8. Differentiation

v) The Derivative of a Quotient (Quotient Rule)

If u(x) and v(x) are differentiable functions, the derivative of

f (x)  u(x) is f '(x)  v(x)u'(x)  u(x)v'(x)
v(x)
v(x)2

The Quotient Rule can be written in function notation as

u   v.u  u.v
 v  v2

Example 4 (b) y  (x2 1)
Differentiate each of the following functions, (x4 1)

(a) y  1 x 1x 1

 x  33
(c) f (x)  4  3x2

Exersice
Find the derivatives of

 x  3  x2 1 3  ans: x2 1 2 6x3 13x2  72x  7
 (a)f   x  4 
(x)  x  42

(b) f (x)  x1  x 2 1  x2  2x 1

ans:  x 12

Page 7 of 15

AM015/8. Differentiation

LECTURE 3 of 5

LEARNING OUTCOMES:

At the end of this topic, student should be able to;

8.2 b) Perform Second Order Differentiation

8.3 a) Find the differentiation of:
i) ex
ii) ef(x)

b) Second Order Derivatives

Consider the function y  f (x) .Differentiate y with respect to x , the first derivative of f ,

that is dy  f (x) is obtained. Differentiate dy with respect to x again, the second derivative
dx dx

of f , that is d  dy   d2y  f (x) obtained.
dx  dx  dx2

First derivative y f x dy or d  f (x)
f  x or
dx dx

Second derivative y d  dy   d2y d2  f (x)
dx  dx  dx2 dx2

Example 1

Find the first and second order derivatives of p(x)  2x4  9x3  5x2  7.

Example 2

Given y  ax2 b, show that x2 d2y  2y
x dx2

Page 8 of 15

AM015/8. Differentiation

8.3 DIFFERENTIATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

(a) Differentiation of Exponential Functions

Let y  ex  loge y  x Change index form to logarithmic form
ln y  x
Differentiate both sides with respect to y
1  dx
y dy

dy  1
dx  dx 

 dy 

But  1
1
 y 

y

 ex

Hence d ex   ex

dx
The Chain Rule can be used to differentiate exponential functions of the form of y  e f x ,

where f x is some functions of x .

Let y  eu , where u  f x.

Then dy  eu and du  f x.

du dx

Using the Chain Rule,

dy  dy  du
dx du dx

 eu  f (x)

 e f (x)  f (x)

 f (x)e f (x)

Therefore, (Derivative of the power) x
(Original exponential function)
d e f x   f xef x
dx

Derivative of Exponential Functions

If y  ex then dy  ex
dx

If y  e f (x) then dy  f (x)e f (x)
dx

Page 9 of 15

AM015/8. Differentiation

Example 3

Differentiate each of the following with respect to x

(a) y  e3x4 (b) y  5e3x

Example 4

Find the derivatives of the following functions

(a) f (x)  e3x 2x 1 (b) f ( x)  e2x
1 ex

Example 5

Given that y  2e2x  3e3x . Show that d2y  dy  6 y  0
dx2 dx

Exercise ans: 24(2x 1)

1) Find f (x) for f (x)  (2x 1)3

 (4x 1) dy and d2y dy  2(2x2  x  6)
(x2  3) dx dx2 . dx x2  3 2
2) Given y , find  ans:

d2y  2(4 x3  3x2  36x  6)
dx2 x2  3 3
 ans:

3) Find the derivatives of the following functions  ans: 2x2e2x 2  x2

 (a) f (x)  e2x 2  x2

(b) f x   2 1 ex ans:  ex 2x  2  x2
 x
x2

Page 10 of 15

AM015/8. Differentiation

LECTURE 4 of 5

LEARNING OUTCOMES:

At the end of this topic, student should be able to;
8.2 b) Perform Second Order Differentiation
8.3 a) Find the differentiation of:

iii) ln x
vi) ln f(x)

8.3 DIFFERENTIATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

(a) Differentiation of Logarithmic Functions

The natural logarithmic function ln x is differentiable for all x  0.
y  ln x

dy  1
dx x

Natural logarithmic functions of the form y  ln f x, where f x is some functions of x , can

be differentiated using the Chain Rule.

Let y  lnu where u  f x.

Then dy  1 and du  f x.

du u dx

Using the Chain Rule Derivative of Logarithmic Functions

dy  dy  du If y  ln x then dy  1
dx du dx dx x

 1  f (x) If y  ln f (x) then dy  f (x)
u dx f (x)

 1  f (x)
f (x)

 f (x)
f (x)

Example 1

Differentiate the following with respect to x .

(a) y  ln 5x (b) y  ln3x 14 (c) g(x)  ln3 1 2x

Page 11 of 15

AM015/8. Differentiation

Example 2
Differentiate the following functions

(a) f x  ln  x  3  2x  53  (b) f x  ln  x 1 
  1 x 

Example 3 (b) y  ln x
Find the derivatives of y ex

(a) y  x ln x

Example 4

If y  ln  x  , prove that d2y  (4 x  1)  dy 2 0
 2x 1  dx2  dx 

Exercise ans: 2ex  1  ln x 
1) Differentiate the following functions  x 

(a) f (x)  ex ln x2 ans: 1 ln(x 1)
(x 1)2
(b) f (x)  ln(x 1)
x 1 Ans: 2x

 2) Differentiate y  log10 x2 1 with respect to x . (ln10)(x2 1)

Page 12 of 15

AM015/8. Differentiation

LECTURE 5 of 5

LEARNING OUTCOMES:

At the end of this topic, student should be able to;
8.4 a) Solve the first derivatives implicitly

8.4 IMPLICIT DIFFERENTIATIONS

(a) Implicit Function

So far differentiation has been done involving functions of the form y  f (x) , which is said to
define y explicitly as a function of x .

Examples: y  3x2  7x 1, y  ex 3lnx2 1

An implicit function is one in which a relationship between x and y is given without having y

as an explicit or clearly defined function of x . y is defined implicitly as a function of x .

Examples: y2  3yx3  x 1, y x  y2  6

An implicit function involving y and x can be differentiated with respect to x as it stands.

To differentiate y with respect to x : d y  dy
dx dx

To differentiate yn with respect to x : d yn  nyn1 dy
dx dx

Proof:

y  f (x)

yn   f (x)n

d yn  dy  f (x)n Use Chain Rule

dx dx

 n f (x) n1 f (x)

 nyn1 dy
dx

We can generalize this as follows:

To differentiate a function of y with respect to x , we differentiate with respect to y and then

multiply by dy .
dx

Page 13 of 15

AM015/8. Differentiation

(b) Implicit Differentiation
Suppose we want to differentiate the implicit function

y2  4x  6x2  3y 1. Differentiate both sides of the
equation with respect to
d  y2  d 4x  d 6x2  d 3y
dx dx dx dx

2y dy  4  12x  3 dy 2. Collect all terms with on one side of the equation
dx dx

2y dy  3 dy  12x  4
dx dx

2y  3 dy 12x  4 3. Factor out

dx

dy  12x  4 4. Solve for
dx 2y  3

Example 1 (b) x3  y3  2xy  8

Find dy in term of x and y if

dx
(a) x2  y2  8

Example 2 (b) x2 y  y2 ln x  x

Find dy in term of x and y if

dx

(a) yey  ex  x

Example 3

Given ye2x  2x 1. Prove that dy  2e2x  2y .
dx

Page 14 of 15

Exercise AM015/8. Differentiation

1) Given that y3  x2 y  x  3y2  0, ans: 2xy 1
(a) find dy in terms of x and y 3y2  x2  6y
dx
(b) evaluate dy when y  3 ans:  1 , 82
dx 99

2) Find dy for the function ln(xy)  2exy ans:  y
dx x

3) If y  x2 y  4 , show that  1  x2  dy  2xy  y .
x  x  dx x2

Page 15 of 15

AM015/ 8: Differentiation

CHAPTER 8: DIFFERENTIATION

TUTORIAL 1 of 7

1. By using first principles, find dy for the following functions.
dx

(a) y = 3x +1 (b) f (x) = 4x2 − 7x + 5

(c) y = (2x − 3)(x + 2) ( )(d) f x = 3x2 − 2x + 1

2. Find the derivative in each case (b)f (x) = x4 − 2x2 + 3

(a) y = 6x4 + 4x2 + 3x + 5 (d)f (x) = x4 − 4x3

(c) f (x) = 3x5 − 6x4 (f) y = 1 − 1
x4
2 x + x3

(e) f (x) = x3 + x +1

3. Differentiate each function with respect to x.

(a) x4 + 3x2 − 5x (b) (x +1)(x − 3) x2 − 5x + 3

(c)

x3

(d) y = x2 +1 (e) y = 2 x(x3 + x2 +1)
x

Answer: (c) 4x+1 (d) 6x-2
1 (a) 3 (b) 8x-7
(b) 4x3 − 4x (c)15x4 − 24x3
2 ( a)24x3 + 8x + 3
(e) 2 + 1 (f) −4 − 1 + 1
(d) 4x3 −12x2 2x x5 2x
1 2

3x3 3x3

3 (a) 4x3 + 6x − 5 (b) 2x − 2 (c) − 1 + 10 − 9
x2 x3 x4

(d) 3 x− 1 53 1
2
3 (e) 7x2 + 5x2 + x

2x2

1 of 11

AM015/ 8: Differentiation

TUTORIAL 2 of 7

1. Find dy for the following function
dx

(a) 1 (b) y = (2x5 − x2 )8 (c) y = 2 (d) y = 6x2 −1
5x + 2 (3x3 − 6)4

2. Use product rule to differentiate the following. (d) y = x3 x2 + 2

(a) y = x x −1 (b) y = x(5 − x)3 (c) y = (x2 +1)2 (1+ x)3

3. Differentiate the following by using quotient rule

2 2

a) y = x b) y = 6x3 (c) y =  3x + 2
x2 +1 x3 + 2x2  2−x

(d) y = x (e) y = (x2 + 4)3
1− x 3x3 + 4

4. Show that: (b) d  3x 3  = 3(3 − x2 )
dx  x2 +  (x2 + 3)2
( )a) d ( x − 9)(x + 2)4 = (x + 2)3(9x − 70)
dx 2 x − 9

Answers: (b)16x(2x5 − x2 )7 (5x3 −1) −72x2 6x
1 (a) − 5 (c) (3x3 − 6)5 (d)
(5x + 2)2 6x2 −1

2 3x − 2 (b) (5 − 4x)(5 − x)2 (c) (x2 +1)(1+ x)2[7x2 + 4x + 3]

(a)

2 x −1

2x2 (2x2 + 3)
(d)

x2 + 2

35 16(3x + 2)
−2x3 (7x + 8)
1 (c) (2 − x) 3 1
(b) (d) 3
(a) 3 (x3 + 2x2)2 2 x (1− x) 2

(x2 +1)2

3x(x2 + 4)2 (3x3 + 8 −12x)
(e) (3x3 + 4)2

2 of 11

AM015/ 8: Differentiation

TUTORIAL 3 of 7

1. Find f '(x) and f "(x) for each of the following functions

(a) y = 3x3 + 2x2 + 4x + 7 (b) y = 4(x2 + 6) (c) f (x) = x2
x 2 + x2

2. If y = 3x + 2 , prove that x2 d2y + x dy − y = 0 .
x dx2 dx

3. Given y = Ax + Bxex with A and B are constants.

Show that x2 y"− (x2 + 2x) y '+ (x + 2) y = 0 .
dy

4. Find for the following functions.

dx

(a) y = e3x (b) y = 5e2x2 (c) y = eln x2

(d) y = ex + 1 (e) y = 1 (f) y = eax2 +bx
ex ex

5. Given that y = 3xe−2x , find dy and d2y.
dx dx 2

( )6. Given y = Ax + B ex , find the constants A and B if y = 3 and dy = 5 when x = 0.
dx

Answers: (b) 8 x− 3  ; 81+ 6  x(4 + x2) ; 2(4 − x2 )
1 x2  x3  c) 3
5
(a) 9x2 + 4x + 4 ; 18x + 4
(2 + x2)2 (2 + x2)2
4 (a) 3e3x (b) 20xe2x2
(c) 2x (d) ex − 1 (e) −1 (f)
(2ax + b)eax2 +b ex 2 ex
5 3e−2x (1− 2x) ; −12e−2x (1− x)

6 A = 2,B = 3

3 of 11

AM015/ 8: Differentiation

TUTORIAL 4 of 7

1.Differentiate each function with respect to x.

(a) ln(4x + 1) (b) ln 3 − x2 (c) ln x 4 (d) (ln x)2 (e) ln 3x +1
 x +1 
(i) x + ln x
(f) ln 1 + x ln x ( )(h) ln ln x2 x − ln x
1− x (g) x2

2. Differentiate the following.

(a) y = xex2 (b) y = e−x ln x (c) y = (xln x) − x ( )(d) y = e2x ln 2x

(e) y = e x (f) y = ex (g) y = (x2 + 2x)ex2 +2x (h) y = (2x2 − 3)e−4x
1− e2x 1+ ln x

dy ( )(b) y = ln x2ex2−5x+1

3. Find for

dx

(a) y = (2x + 3)3 ln (4x + 5)

Answer: (b) − x 4 2 ln x (e)
14 3− x2 (c) (d)
(a)
4x +1 x x

2

(x +1)(3x +1)

1 1 − 2 ln x 1 2 − 2ln x
(g) (h) (i) (x − ln x)2
(f) (1− x)(1+ x) x ln x
x3

( )2
(a) e x2 (2x 2 + 1) (b) e−x  1 − ln x  (c) ln x (d) e2x  1 + 2 ln 2x  (e) ex e2x +1
x   x  (1 − e2x )2

ex[x(1+ ln x) −1] (g) 2(x + 1)3 e x2+2x (h) −4e−4x (2x − 3)(x +1)
(f) x(1+ ln x)2

3 2 (2x 3)2  2 (2x + 3) 3ln (4x 5) (b) 2 + 2x − 5
x
(a) +  + +
 4x + 5 

4 of 11


Click to View FlipBook Version