The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by zweismile82, 2020-12-04 00:54:10

4 PERSAMAAN KUADRATIK

4 PERSAMAAN KUADRATIK

Keywords: Persamaan Kuadratik

SMK TUN PERAK,
PADANG RENGAS.

MODUL PdPR SPM

MATEMATIK
TINGKATAN 5

KERTAS 2 ,
BAHAGIAN A:

PERSAMAAN
KUADRATIK

Disediakan oleh Teacher Leow Tze Wei

PERSAMAAN KUADRATIK
(4-5 markah)

NOTA RINGKAS:
PEMFAKTORAN

Pemfaktoran ialah proses mengenal pasti faktor sebutan
dan ungkapan algebra dan apabila didarabkan akan
menghasilkan ungkapan asal.

Pemfaktoran merupakan proses songsangan kepada
kembangaan.

Kembangan

Pemfaktoran
Pemfaktoran Ungkapan Kuadratik

(a) Kaedah FSTB (Faktor Sepunya Terbesar)
Contoh: Faktorkan setiap ungkapan berikut.

Penyelesaian:

1

PERSAMAAN KUADRATIK
(4-5 markah)

Pemfaktoran Ungkapan Kuadratik

(b) Kaedah Beza antara Dua Sebutan Kuasa Dua Sempurna

Keadah ini hanya boleh digunakan jika kedua-dua sebutan algebra tersebut

ialah kuasa dua sempurna Ingat Kembali

Contoh: Faktorkan setiap ungkapan berikut.
Penyelesaian:

(c) Kaedah Darab Silang

Contoh: Faktorkan setiap ungkapan berikut.
Penyelesaian:

2

PERSAMAAN KUADRATIK

Persamaan kuadratik terdiri daripada:
Satu pemboleh ubah sahaja
2 sebagai kuasa tertinggi pemboleh ubah
Tanda kesamaan “ = “

Bentuk am persamaan kuadratik:

dengan a , b , c ialah pemalar, dan x sebagai
pembole ubah.

PENGGUNAAN KALKULATOR SAINTIFIK UNTUK MENCARI
PUNCA PERSAMAAN KUADRATIK

1. Bentukkan persamaan am Guna kalkulator

MODE MODE MODE

2. Faktorkan persamaan am. EQN Tekan
( )( )=0 1

3. Berikan jawapan. Tekan
x = ______ , x = ______

Degree ? Tekan
2

Masukkan nilai a, b , c .

3

Teknik Menjawab Soalan SPM

Soalan 1: (SPM 2015)
Selesaikan persamaan kuadratik berikut .
Jawapan:

a=1, b=-1, c=-6

TIPS: menggunakan kalkulator saintifik untuk mencari punca
persamaan kuadratik

1.Tekan MODE 3 kali.

2.Tekan 1 untuk memilih EQN .

3.Tekan .

4.Tekan 2 untuk memilih Degree?.
5. Pada paparan, masukkan

a? 1= x1 = - 2 , x2 = 3
b? -1=
c? -6=

4

Teknik Menjawab Soalan SPM

Soalan 2:
Selesaikan persamaan kuadratik berikut .
Jawapan:

a=2, b=-3, c=-5

TIPS: menggunakan kalkulator saintifik untuk mencari punca
persamaan kuadratik

1.Tekan MODE 3 kali.

2.Tekan 1 untuk memilih EQN .

3.Tekan .

4.Tekan 2 untuk memilih Degree?.
5. Pada paparan, masukkan

a? 2= x1 = 2.5 , x2 = -1 Tukarkan 2.5 kepada pecahan
b? -3= tak wajar.

c? -5= Tekan SHIFT ab/c

5

Teknik Menjawab Soalan SPM

Contoh Soalan KBAT:

Jawapan:

Luas segi empat sama
= panjang x lebar

6

Frequently Asked Questions (FAQ)

FAQ 1:
Bolehkah saya menggunakan jenis kaedah pemfaktoran
sesuka hati dalam pencarian punca persamaan kuadratik?

Tidak boleh. Setiap persamaan kuadratik perlu diselesaikan
dengan jenis kaedah pemfaktoran yang bersesuaian.

FAQ 2:
Bolehkah saya terus menulis jawapan daripada penggiraan
kalkulator saintifik tanpa langkah penyelesaian?

Tidak boleh. Langkah penyelesaian perlu ditunjukkan untuk
mendapat markah. Penggunaan kalkulator saintifik hanya untuk
semakan jawapan sahaja.

FAQ 3:
Bagaimana hendak menyelesaikan soalan dalam bentuk
permasalahan harian?

Langkah 1: Memahami masalah yang diberikan.
Langkah 2: Bentuk persamaan kuadratik daripada maklumat

yang diberikan dalam soalan.
Langkah 3: Kemudian, selesai mengikut kaedah pemfaktoran.

7

LATIHAN:

Soalan 1:
Selesaikan persamaan kuadratik berikut.

x (2x+5) = 3
Jawapan:

Soalan 2:
Selesaikan persamaan kuadratik berikut.
Jawapan:

Soalan 3:
Selesaikan persamaan kuadratik berikut

Jawapan:

8

LATIHAN:

Soalan 4:

Jawapan:

Soalan 5:
Anas berumur x tahun, 5 tahun lebih muda daripada abangnya,
Faris. Jika hasil darab umur mereka ialah 24, berapakah umur
Anas?
Jawapan:

9

Jawapan:

1.

2.

3.

10

Jawapan:

4.
5.

11


Click to View FlipBook Version