The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

แบบฝึกหัด ห.ร.ม. ค.ร.น. ป.6

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by 53E143033, 2022-09-20 03:14:15

แบบฝึกหัด ห.ร.ม. ค.ร.น. ป.6

แบบฝึกหัด ห.ร.ม. ค.ร.น. ป.6

แบบฝกึ หัดคณติ ศาสตร์

ช่อื ..........................................................................................
ชนั้ .........................................เลขท.ี่ ....................................
โรงเรียน ..............................................................................
ครูผสู้ อน .............................................................................
ปีการศึกษา........................................................................

สารบญั

เร่อื ง หน้า
- ตัวประกอบของจานวนนบั 2
- จานวนเฉพาะ ตัวประกอบเฉพาะ 4
- การแยกตวั ประกอบ 8
- การหา ห.ร.ม. โดยการหาตวั หารร่วม 12
- การหา ห.ร.ม. โดยการแยกตัวประกอบ 15
- การหา ห.ร.ม. โดยการหาร 17
- การหา ค.ร.น. โดยการหาผลคณู ร่วม 21
- การหา ค.ร.น. โดยการแยกตัวประกอบ 24
- การหา ค.ร.น. โดยการหาร 26
- ความสมั พันธ์ระหว่าง ห.ร.ม. กบั ค.ร.น. ของจานวนนบั 2 จานวน 29
- โจทยป์ ญั หาท่ีเก่ยี วกับ ห.ร.ม. 33
- โจทยป์ ญั หาทเี่ กีย่ วกับ ค.ร.น. 34
- โจทย์ปญั หาที่เกี่ยวกบั ห.ร.ม. และ ค.ร.น. 37

มาตรฐานการเรียนรู้
และตวั ชว้ี ดั

เรื่อง ห.ร..ม. และ ค.ร.น.

สาระท่ี 1 จานวนและพชี คณติ

มาตรฐานการเรยี นรู้
ค 1.1 เขา้ ใจความหลากหลายของการแสดงจานวน ระบบจานวน

การดาเนนิ การของจานวนผลท่เี กิดขน้ึ จากการดาเนนิ การสมบตั ิของการ
ดาเนินการ และนาไปใช้

ตวั ช้ีวดั
ค 1.1 ป.6/4 หา ห.ร.ม. ของจานวนนับไมเ่ กิน 3 จานวน
ค 1.1 ป.6/5 หา ค.ร.น. ของจานวนนบั ไมเ่ กิน 3 จานวน
ค 1.1 ป.6/6 แสดงวิธหี าคาตอบของโจทยป์ ัญหาโดยใชค้ วามร้เู ก่ียวกบั

ห.ร.ม. และ ค.ร.น.

1

ห.ร.ม. และ ค.ร.น. ป.6

ตวั ประกอบของจานวนนับ มี 3 วิธี
หาตวั หารร่วม
จานวนนับทห่ี ารจานวนนบั นนั้ ได้ลงตัว แยกตัวประกอบ

จานวนเฉพาะ หารสัน้
จานวนนับทีม่ ากกว่า 1 และมเี พียง 1
และตวั มนั เองทหี่ ารจานวนนบั นน้ั ไดล้ งตัว มี 3 วธิ ี
หาตัวคูณร่วม
ตัวประกอบเฉพาะ แยกตัวประกอบ
ตวั ประกอบของจานวนนับทีเ่ ป็นจานวนเฉพาะ
หารส้นั
ตัวหารร่วมมาก ( ห.ร.ม.)
ห.ร.ม. ของจานวนนบั ต้ังแต่ 2 จานวนขน้ึ ไป
หมายถึง จานวนนับทม่ี ากท่ีสุดที่หารจาานวนนับ
เหลา่ นน้ั ไดล้ งตัว

ตวั หารรว่ มทม่ี ากท่สี ดุ ใชอ้ ักษรยอ่ ห.ร.ม.

จานวนนบั ทหี่ ารจานวนนับตั้งแต่ 2 จานวน
ขึน้ ไปได้ลงตัว เรียกว่า ตวั ประกอบร่วม
หรือ ตวั หารร่วม ของจานวนนับเหล่าน้ัน

ตวั คูณรว่ มน้อย ( ค.รน.)

ค.ร.น. ของจานวนนบั ต้งั แต่ 2 จานวนข้นึ ไป
หมายถงึ จานวนนับทน่ี อ้ ยท่ีสุด
ทีห่ ารด้วยจานวนนับเหล่านน้ั ได้ลงตวั
ผลคณู ร่วมทนี่ อ้ ยทส่ี ุด ใช้อกั ษรย่อ ค.ร.น.

ผลคณู ร่วมของจานวนนับตัง้ แต่ 2 จานวนข้นึ
ไป เปน็ จานวนนบั ทีห่ ารด้วยจานวนนับ
เหล่านนั้ ได้ลงตวั

ใบความรู้ 1 2

เรื่อง ตวั ประกอบของจานวนนบั

ตวั ประกอบของจานวนนับใด หมายถงึ จานวนนับท่ีหารจานวนนับนั้นไดล้ งตวั เชน่
ตัวประกอบของ 6 หมายถงึ จานวนนบั ท่หี าร 6 ไดล้ งตวั ได้แก่ 1 2 3 และ 6
ตัวประกอบของ 12 หมายถงึ จานวนนบั ทห่ี าร 12 ได้ลงตวั ได้แก่ 1 2 3 4 6 และ 12

เขยี นประโยคสัญลักษณก์ ารหารจากประโยคสัญลกั ษณก์ ารคณู
โดยใช้ความสมั พันธ์ของการคณู และการหาร

1 × 12 = 12 12 × 1 = 12
12 ÷ 1 = 12 12 ÷ 12 = 1

3 × 4 = 12 4 × 3 = 12
12 ÷ 3 = 4 12 ÷ 4 = 3

6 × 2 = 12 2 × 6 = 12
12 ÷ 6 = 2 12 ÷ 2 = 6

จานวนนับทหี่ าร 12 ไดล้ งตวั เรยี กจานวนนบั เหลา่ นนั้ วา่ เปน็ ตวั ประกอบของ 12
ดังนน้ั 1 2 3 4 6 12 เปน็ ตัวประกอบของ 12

หาตัวประกอบของ 6 หาตัวประกอบของ 32

แนวคดิ แนวคดิ
หาจานวนนับ 2 จานวนทนี่ ามาคณู กันแล้ว หาจานวนนบั 2 จานวนทนี่ ามาคณู กนั แล้ว
ได้ผลคณู เทา่ กบั 6 ได้แก่ ได้ผลคณู เทา่ กบั 12 ไดแ้ ก่

1 ×6=6 6×1=6 1 × 32 = 32 32 × 1 = 32
2 ×3=6 3×2=6 2 × 16 = 32 16 × 2 = 32
4 × 8 = 32 8 × 4 = 32
จะได้ 6 ÷ 1 = 6
6÷2=3 สังเกตว่าเมื่อหาร 6 จะได้ 32 ÷ 1 = 32 32 ÷ 32 = 1
6÷3=2 ดว้ ย 1 2 3 และ 6 32 ÷ 2 = 16 32 ÷ 16 = 2
6÷6=1 จะหารลงตัวทงั้ หมด 32 ÷ 4 = 8 32 ÷ 8 = 4

ดังน้ัน 1 2 3 และ 6 ดงั น้ัน 1 2 4 8 16 และ 32
เปน็ ตวั ประกอบของ 6 เปน็ ตัวประกอบของ 32

3

แบบฝกึ หัดท่ี 1 คะเเนน

คาชี้แจง ให้นกั เรยี นหาตวั ประกอบทั้งหมดของจานวนทก่ี าหนดให้

ตัวอย่าง เนือ่ งจาก 16
หาร 1 2 4 8 และ 16
ตัวประกอบของ 16 ได้ลงตัว
ได้แก่ __1,__2_,__4__, _8__แ_ล__ะ_1_6______

1 2
ตัวประกอบของ 8 ตวั ประกอบของ 18
ไดแ้ ก่ _____________________ ไดแ้ ก่ ___________________
_____________________ ___________________

3 4
ตวั ประกอบของ 21 ตวั ประกอบของ 24
ไดแ้ ก่ _____________________ ไดแ้ ก่ ___________________
_____________________ ___________________

5 6
ตัวประกอบของ 30 ตวั ประกอบของ 36
ไดแ้ ก่ _____________________ ได้แก่ ___________________
_____________________ ___________________

7 8
ตวั ประกอบของ 48 ตวั ประกอบของ 50
ไดแ้ ก่ _____________________ ไดแ้ ก่ ___________________
_____________________ ___________________

ใบความรู้ 2 4

เร่ือง จานวนเฉพาะ ตัวประกอบเฉพาะ

จานวนเฉพาะ หมายถงึ จานวนนบั ที่มากกว่า 1 และมเี พียง 1 และตวั มันเองทหี่ าร
จานวนนับน้ันได้ลงตัว

ตัวประกอบเฉพาะ คือ ตวั ประกอบของจานวนนับทเี่ ปน็ จานวนเฉพาะ

คาถามชวนคดิ มเี พยี ง 1 กบั
ตัวมนั เองท่ีหารลงตวั
2 เป็นจานวนเฉพาะหรอื ไม่ ?
ตอบ 2 เปน็ จานวนเฉพาะ เน่ืองจาก มีเพยี ง 1 กับ 2 เท่าน้ันทีห่ าร 2 ลงตวั

8 เป็นจานวนเฉพาะหรอื ไม่ ? มี 2 4 8 ที่หาร 8 ลงตวั เพราะไม่ใชม่ ีเพียง 1
ตอบ 8 ไม่เป็นจานวนเฉพาะ เนอื่ งจาก กับตัวมนั เองทห่ี ารลงตวั
แต่มีตัวอน่ื ๆ ดว้ ย

24 เป็นจานวนเฉพาะหรือไม่ ? มี 2 3 4 6 8 12 ที่หาร 24 ลงตวั
ตอบ 24 ไม่เปน็ จานวนเฉพาะ เนอื่ งจาก

29 เปน็ จานวนเฉพาะหรอื ไม่ ? มีเพียง 1 กับ 29 ที่หาร 29 ลงตัว
ตอบ 29 เป็นจานวนเฉพาะ เนือ่ งจาก

หาตัวประกอบของ 28 จากตวั ประกอบท้งั หมดของ 28
มเี พยี ง 2 และ 7 ทีเ่ ป็นจานวนเฉพาะ

ตวั ประกอบของ 28 ไดแ้ ก่ 1 2 4 7 14 และ 28
ตวั ประกอบเฉพาะของ 28 คือ 2 และ 7

คาถามชวนคดิ

1 เปน็ ตัวประกอบเฉพาะของจานวนนับทุกจานวนใชห่ รอื ไม่ เพราะเหตุใด
ตอบ 1 ไม่เป็นตัวประกอบเฉพาะ เพราะ 1 ไมใ่ ช่จานวนเฉพาะ

6 และ 11 เป็นตวั ประกอบเฉพาะของ 66 หรือไม่ เพราะเหตใุ ด
ตอบ 11 เป็นตวั ประกอบเฉพาะของ 66

แต่ 6 ไมเ่ ป็นตวั ประกอบเฉพาะของ 66 เพราะ 6 ไม่ใชจ่ านวนเฉพาะ

5

แบบฝึกหัดที่ 2 คะเเนน

คาช้ีแจง ใหน้ กั เรยี นนาจานวนที่กาหนดใหเ้ ติมลงในตารางให้ถกู ตอ้ ง

9 11 25 20 19
32 2 56 48 37
61 81 49 3 8
12 4 15 24 53

เปน็ จานวนเฉพาะ ไม่เปน็ จานวนเฉพาะ

3

6

แบบฝึกหดั ที่ 3 คะเเนน

คาชแี้ จง ให้นกั เรยี นวงล้อมรอบจานวนเฉพาะทุกจานวน

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

7

แบบฝกึ หดั ที่ 4 คะเเนน

คาช้ีแจง ให้นักเรียนเตมิ คาตอบใหถ้ กู ตอ้ ง

ตวั อยา่ งที่ 1 หาตัวประกอบทง้ั หมดของ 21 ตวั อย่างที่ 2 หาตวั ประกอบท้ังหมดของ 37
1 × 21 = 21 1 × 37 = 37
3 × 7 = 21

ตวั ประกอบของ 21 ไดแ้ ก่ _1_,_3__,__7__แ__ล_ะ__2__1__ ตัวประกอบของ 37 ไดแ้ ก่ __1__แ__ล_ะ__3__7___
ตัวประกอบเฉพาะของ 21 ไดแ้ ก่ _3___แ_ล__ะ__7__ ตวั ประกอบเฉพาะของ 37 ไดแ้ ก่ __3_7____

1.

ตวั ประกอบของ 30 ได้แก่ _________________________________________
ตัวประกอบเฉพาะของ 30 ได้แก่ __________________________________

2.

ตวั ประกอบของ 66 ได้แก่ ________________________________________
ตัวประกอบเฉพาะของ 66 ไดแ้ ก่ _________________________________

3.

ตัวประกอบของ 32 ไดแ้ ก่ ________________________________________
ตวั ประกอบเฉพาะของ 32 ได้แก่ _________________________________

4.

ตวั ประกอบของ 47 ได้แก่ ________________________________________
ตัวประกอบเฉพาะของ 47 ไดแ้ ก่ _________________________________

ใบความรู้ 3 8

เร่อื ง การแยกตวั ประกอบ

การแยกตวั ประกอบ หมายถงึ การเขยี นแสดงจานวนนับนั้นในรูปการคณู กัน
ของตวั ประกอบเฉพาะ

การแยกตัวประกอบอาจทาได้ 2 วธิ ี คือ โดยใชก้ ารคณู และโดยใชก้ ารหาร

วิธีที่ 1 โดยใช้การคณู หาจานวนเฉพาะทน่ี ้อยทีส่ ดุ ท่ีหาร 48 ลงตวั
จะไดว้ า่ 48 ÷ 2 = 24 2 × 24 = 48
แยกตัวประกอบของ 48
48 = 2 × 24 หาจานวนเฉพาะท่ีนอ้ ยทส่ี ดุ ท่หี าร 24 ลงตัว
จะได้ว่า 24 ÷ 2 = 12 2 × 12 = 24

48 = 2 × 2 × 12 หาจานวนเฉพาะท่ีนอ้ ยทส่ี ดุ ทหี่ าร 12 ลงตัว

จะไดว้ ่า 12 ÷ 2 = 6 2 × 6 = 12

48 = 2 × 2 × 2 × 6 หาจานวนเฉพาะทนี่ ้อยทสี่ ดุ ท่ีหาร 6 ลงตวั
48 = 2 × 2 × 2 × 2 × 3
จะไดว้ า่ 6 ÷ 2 = 3 2×3=6

ดงั นน้ั 48 = 2 × 2 × 2 × 2 × 3 แยกตวั ประกอบ
วธิ ที ี่ 2 โดยใช้การหาร สาเรจ็ แล้วจา้

แยกตัวประกอบของ 48

แนวคิด นาตัวประกอบเฉพาะของ 48 มาหารจนได้ผลหารเปน็ จานวนเฉพาะ
และเขยี นจานวนน้นั ในรูปการคูณของตัวหารทกุ ตัวและผลหารสุดท้าย

2 48

จานวนนบั ทนี่ ามาหาร 2 24
2 12
ตอ้ งเป็นจานวนเฉพาะเท่านน้ั !!

26 ต้องหารจนกวา่ ผลหารเป็นจานวนเฉพาะ
3

ดังนนั้ 48 = 2 × 2 × 2 × 2 × 3

ลองเช็คดนู ะคะ
2 × 2 × 2 × 2 × 3 = 48

ดังนัน้ ถูกต้องจา้

9

แบบฝึกหดั ท่ี 5 คะเเนน

คาชแ้ี จง ให้นักเรียนพจิ ารณาการแยกตัวประกอบของจานวนนบั
ทก่ี าหนด ถูกต้องหรือไม่ ถ้าถกู ใส่เครอ่ื งหมาย ถ้าผิดใส่เครื่องหมาย

ตัวอย่าง การแยกตวั ประกอบ
หมายถงึ การเขยี นแสดงจานวนนบั นน้ั
ในรูปการคูณกนั ของตัวประกอบเฉพาะ

52 = 2 × 2 × 13 [ เพราะ 2 และ 13 เป็นตัวประกอบเฉพาะ ของ 52 ]

36 = 2 × 3 × 6 [ เพราะ 6 ไม่เป็นตวั ประกอบเฉพาะ ของ 36 ]

21 = 1 × 3 × 7 [ เพราะ 1 ไม่เปน็ ตวั ประกอบเฉพาะ ของ 21 ]

1 ไมใ่ ช่จานวนเฉพาะ

1. 2.
12 = 2 × 2 × 3 35 = 5 × 7

3. 4.
16 = 2 × 2 × 4 48 = 2 × 3 × 8

5. 6.
22 = 2 × 11 45 = 3 × 3 × 5

7. 8.
28 = 2 × 2 × 7 60 = 2 × 5 × 6

9. 10.

32 = 2 × 2 × 2 × 4 81 = 3 × 3 × 3 × 3

10

แบบฝกึ หัดที่ 6 คะเเนน

คาชีแ้ จง ให้นกั เรยี นแยกตวั ประกอบจานวนนับโดยใช้การคณู

ตัวอย่าง 1.
แ__ย_ก_ต_ัว_ป__ร_ะ_ก_อ_บ__ข_อ_ง__3_8____________
_แ_ย__ก_ต_ัว_ป__ร_ะก__อ_บ_ข__อ_ง__8_0___________
______8__0__=__2__×__4_0______________ _______________________________
______8__0__=__2__×__5__×__8___________ _______________________________
______8__0__=__2__×__5__×__2__×__4_______ _______________________________
______8__0__=__2__×__5__×__2__×__2__×__2___ _______________________________
_______________________________
_______________________________ _______________________________

ด_งั_น__้ัน__8_0__=__2__×__5__×__2__×__2__×__2____

1. 3. _แ_ย_ก_ต__ัว_ป_ร_ะ_ก_อ_บ__ข_อ_ง__1_0__0__________
แ__ย_ก_ต_ัว_ป__ร_ะ_ก_อ_บ__ข_อ_ง__5_4____________
_______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________

11

แบบฝึกหดั ท่ี 7 คะเเนน

คาชี้แจง ใหน้ ักเรียนแยกตวั ประกอบจานวนนบั โดยใช้การหาร

ตวั อยา่ ง 1.
แ__ย_ก_ต_ัว_ป__ร_ะ_ก_อ_บ__ข_อ_ง__3_8____________
_แ_ย__ก_ต_วั _ป__ร_ะก__อ_บ_ข__อ_ง__8_0___________
_________2____8_0_________________ _______________________________
_______________________________
จานวนท่ีนบั มาหารตอ้ ง _______________________________
_______________________________
เเปชน่น็ จ2านว_น_เฉ_พ_าะ_เท_า่ _นนั้ __2____4__0________________ _______________________________
_________2____2_0_________________ _______________________________
__________2___1_0_______ตเป_้อ็นง_หจ_าานร_จว_นนกเ_ฉว_พ่าผา_ละ_หา_ร
______________5_______[_5_เป_น็ _จ_าน_ว_นเ_ฉพ_า_ะ ]

ด__ัง_น_้นั __8__0__=__2_×__2__×__2__×__2__×__5____

1. 3. แ__ย_ก_ต__วั _ป_ร_ะ_ก_อ_บ__ข_อ_ง__1_0__0__________
แ__ย_ก_ต_วั_ป__ร_ะ_ก_อ_บ__ข_อ_ง__5_4____________
_______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________

เพื่อน ๆ ลองเปรียบเทียบคาตอบ
ของแบบฝึกหัดท่ี 5 จะต้อง
เหมือนกนั เพยี งแคว่ ิธคี ิดตา่ งกนั
เท่านน้ั เอง

ใบความรู้ 4 12

เรอื่ ง การหา ห.ร.ม. โดยใช้ตัวหารร่วม

จานวนนับทหี่ ารจานวนนบั ต้งั แต่ 2 จานวนข้ึนไปได้ลงตวั เรียกวา่ ตัวประกอบรว่ ม
หรือ ตวั หารรว่ ม ของจานวนนบั เหล่าน้นั
1 เป็นตัวประกอบร่วม หรือ ตัวหารรว่ มของจาานวนนับทกุ จานวน

ตัวหารร่วมทม่ี ากทสี่ ุด ใชอ้ กั ษรย่อ ห.ร.ม.

ห.ร.ม. ของจานวนนับต้ังแต่ 2 จานวนขึ้นไป หมายถงึ จานวนนบั ทม่ี ากท่สี ุดที่

หารจาานวนนับเหล่านั้นไดล้ งตวั

ตวั อยา่ งท่ี 1

หา ห.ร.ม. ของ 16 และ 20

วธิ ีทา ตวั ประกอบของ 16 ได้แก่ 1, 2, 4, 8 และ 16

ตัวประกอบของ 20 ไดแ้ ก่ 1, 2, 4, 5, 10 และ 20

ตัวหารร่วมของ 16 และ 20 คอื 1, 2 และ 4 ในตัวหารร่วมทัง้ หมด
4 มคี า่ มากทสี่ ดุ
ตัวหารรว่ มคอื ตวั หารรว่ มทม่ี ากทส่ี ดุ ของ 16 และ 20 คือ 4
ตวั ประกอบรว่ มนน่ั เอง ดงั นั้น ห. ร. ม. ของ 16 และ 20 คือ 4

ตอบ ๔

ตัวอย่างที่ 2

หา ห.ร.ม. ของ 16, 24 และ 40 หาตวั หารรว่ มโดยดวู ่ามี
วธิ ที า ตัวประกอบของ 16 ไดแ้ ก่ 1, 2, 4, 8 และ 16 ตัวประกอบของ 16 24 และ 40
จานวนใดบา้ งท่ีซา้ กัน

ตวั ประกอบของ 24 ได้แก่ 1, 2, 3, 4, 6, 8, 12 และ 24

ตวั ประกอบของ 40 ไดแ้ ก่ 1, 2, 4, 5, 8, 10, 20 และ 40

ตวั หารร่วมของ 16, 24 และ 40 คือ 1, 2, 4 และ 8

ตัวหารรว่ มทม่ี ากทส่ี ดุ ของ 16, 24 และ 40 คอื 8

ดังนนั้ ห. ร. ม. ของ 16, 24 และ 40 คอื 8 เนอ่ื งจากมซี า้ กนั คือ 1 2 4 และ 8
ตอบ ๘ แต่ 8 เปน็ ตวั หารร่วมทมี่ ากทส่ี ุด
ดังน้นั ห.ร.ม. คือ 8

ใบงาน ตามตัวชีว้ ดั 13
รวมคะเเนน
เรอ่ื ง การหา ห.ร.ม. โดยใชต้ ัวหารร่วม

ค 1.1 ป.6/4 หา ห.ร.ม. ของจานวนนบั ไมเ่ กนิ 3 จานวน

คาช้แี จง ใหน้ กั เรยี นแสดงวธิ ที าหา ห.ร.ม. โดยใช้ตวั หารรว่ ม

หา ห.ร.ม. ของ 18 และ 30

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

หา ห.ร.ม. ของ 14 35 และ 49

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

ช่อื ……………………………………………………..…… ช้นั …………… เลขท่ี ……

14

หา ห.ร.ม. ของ 24 48 และ 56

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

หา ห.ร.ม. ของ 20 40 และ 80

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

หา ห.ร.ม. ของ 28 56 และ 70

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

ใบความรู้ 5 15

เร่ือง การหา ห.ร.ม. โดยการแยกตวั ประกอบ

ขั้นตอน

1 แยกตัวประกอบของแตล่ ะจานวนท่โี จทยก์ าหนด
2 สังเกตว่ามตี ัวประกอบเฉพาะจานวนใดบ้างทเ่ี ป็นตัวประกอบรว่ ม(ตวั หารร่วม)
3 นาตวั หารร่วมคณู กันจะได้ตัวหารร่วมที่มากที่สุด

ตัวอย่างท่ี 1 3 เป็นตวั หารรว่ ม
หา ห.ร.ม. ของ 27 และ 45 หรือตัวประกอบร่วมนน่ั เอง

วธิ ีทา 27 = 3 × 3 × 3 นาตวั หารรว่ มทกุ จานวนมาคณู กัน
45 = 3 × 3 × 5 ผลคูณที่ได้จะเป็นตวั หารรว่ ม
ท่มี ากทสี่ ุดพบวา่ 3 × 3 = 9
เป็นตวั หารรว่ มทมี่ ากทสี่ ุด
ของ 27 และ 45

ดงั นนั้ ห.ร.ม. คอื 3 × 3 = 9
ตอบ ๙

ตัวอยา่ งท่ี 2

หา ห.ร.ม. ของ 16 40 และ 72 เลือกเฉพาะตัวทซี่ า้ กนั
เลือกมา 1 ตวั

วธิ ีทา 16 = 2 × 2 × 2 × 2

40 = 2 × 2 × 2 × 5

72 = 2 × 2 × 2 × 3 × 3

ดงั น้ัน ห.ร.ม. คอื 2 × 2 × 2 = 8 พบวา่ 2 × 2 × 2 = 8
ตอบ ๘ เป็นตัวหารร่วมที่มากที่สุด
ของ 16 40 และ 72

ใบงาน ตามตวั ช้ีวัด 16
รวมคะเเนน
เรอ่ื ง การหา ห.ร.ม. โดยการแยกตัวประกอบ

ค 1.1 ป.6/4 หา ห.ร.ม. ของจานวนนบั ไม่เกนิ 3 จานวน

คาชแ้ี จง ใหน้ ักเรยี นแสดงวธิ ีทาหา ห.ร.ม. โดยการแยกตัวประกอบ

ตัวอยา่ ง 24 และ 36 50 และ 100

ว_ธิ __ีท_า___2_4___=__2__×__2__×__2__×__3______ _______________________________
_______3_6___=__2__×__2__×__3__×__3______ _______________________________
_______________________________
_______________________________ _______________________________
_______________________________
_ด_งั_น__้นั _ห__.ร_._ม_._ค__ือ__2_×__2_×_3__=__1_2_____ _______________________________
_______________________________
_______________________________

_______________________________

_ต_อ_บ___1_2________________________

21 30 และ 45 16 40 และ 48

_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________

ชื่อ……………………………………………………..…… ช้นั …………… เลขท่ี ……

ใบความรู้ 6 17

เร่อื ง การหา ห.ร.ม. โดยการหาร

ข้นั ตอน

1 หาตวั หารร่วมของจานวนนบั ทโ่ี จทย์กาหนด แลว้ นามาหาร
2 หารจนกวา่ ตวั หารร่วมจะเปน็ 1 การหารจึงจะสิน้ สดุ
3 นาตวั หารทกุ จานวนคูณกนั จะไดต้ วั หารร่วมท่มี ากทีส่ ดุ

ตวั อย่างท่ี 1 จานวนนบั ท่ีนามาหาร
หา ห.ร.ม. ของ 36 และ 60 จะเป็นจานวนเฉพาะ
หรือไมเ่ ปน็ จานวนเฉพาะก็ได้

หาตวั หารร่วมของ 36 และ 60 2 36 60 เน่ืองจากไมม่ จี านวนใดทส่ี ามารถหาร
เช่น 2 แล้วนามาหารท้ังสองจานวน 2 18 30 ไดท้ ้ัง 3 และ 5 ดังนน้ั ตวั หารรว่ ม
39 15 คอื 1 น่ันเอง จงึ ส้นิ สดุ การหาร
หาตัวหารรว่ มของ 9 และ 15
คอื 3 แล้วนามาหารทง้ั สองจานวน 3 5

ดงั นัน้ ห.ร.ม. คอื 2 × 2 × 3 = 12 นามาคณู เฉพาะ ตวั หาร
ตอบ ๑๒
ตัวหาร

ตัวอยา่ งที่ 2

หา ห.ร.ม. ของ 30 45 และ 90

หาตวั หารรว่ มของ 30 45 และ 90 5 30 45 90 สนิ้ สดุ การหาร เนอื่ งจากไมม่ จี านวนใด
เชน่ 5 แลว้ นามาหารทัง้ สามจานวน 369 18 ทสี่ ามารถหารทั้ง 2 3 และ 6 ได้
หรอื จะใช้ 15 หารเลยกไ็ ด้ สรุปคอื ตัวหารรว่ มเปน็ 1 น่นั เอง
จงึ ส้ินสดุ การหาร
236

ดงั นน้ั ห.ร.ม. คอื 5 × 3 = 15 กรณีท่หี าตวั หารรว่ ม
ตอบ ๑๕ ไมไ่ ด้เลย ห.ร.ม. คอื 1

เช่น - ห.ร.ม. ของ 9 และ 10 คอื 1
- ห.ร.ม. ของ 3 และ 14 คือ 1

ใบงาน ตามตัวช้วี ดั 18
รวมคะเเนน
เรอื่ ง การหา ห.ร.ม. โดยการหาร

ค 1.1 ป.6/4 หา ห.ร.ม. ของจานวนนับไม่เกนิ 3 จานวน

คาชแี้ จง ให้นกั เรียนแสดงวิธที าหา ห.ร.ม. โดยการหาร

ตวั อยา่ ง 18 และ 30 36 และ 51

_ว_ิธ_ีท__า____2____1_8_____3_0___________ ว_ธิ _ีท__า___________________________
_________3_____9_____1_5___________
______________3______5___________ _______________________________
_______________________________
_______________________________ _______________________________
_______________________________
_______________________________ _______________________________

_ด_งั_น__้นั _ห__.ร_._ม_._ค__อื __2_×__3_=__6_________ _ต_อ_บ____________________________
__ต_อ_บ___6________________________

24 32 และ 44 14 35 และ 49

_ว_ธิ _ีท__า__________________________ _ว_ิธ__ที _า__________________________

_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________

__ต_อ_บ___________________________ __ต_อ_บ___________________________

ชื่อ……………………………………………………..…… ชนั้ …………… เลขท่ี ……

ใบงาน ตามตัวชี้วดั 19
รวมคะเเนน
เรอ่ื ง การหา ห.ร.ม. โดยการแยกตวั ประกอบ

ค 1.1 ป.6/4 หา ห.ร.ม. ของจานวนนบั ไมเ่ กนิ 3 จานวน

คาชแ้ี จง ให้นกั เรยี นจบั คู่ ห.ร.ม. ของจานวนนับทีก่ าหนดให้

1. 25 และ 70 20

2. 27 และ 81 27
3. 90 105 และ 150 5
4. 60 120 และ 140 15

ช่ือ……………………………………………………..…… ชัน้ …………… เลขท่ี ……

ใบงาน ตามตัวช้วี ัด 20
รวมคะเเนน
เรอ่ื ง การหา ห.ร.ม.

ค 1.1 ป.6/4 หา ห.ร.ม. ของจานวนนบั ไม่เกนิ 3 จานวน

คาชแ้ี จง ให้นกั เรียนหา ห.ร.ม. ของจานวนตอ่ ไปน้ี

ตวั อย่าง 32 และ 40

8

1 24 และ 42
2 54 และ 99
3 12, 27 และ 45
4 48, 64 และ 80
5 20, 72 และ 108

ช่ือ……………………………………………………..…… ชน้ั …………… เลขท่ี ……

ใบความรู้ 7 21

เรื่อง การหา ค.ร.น. โดยการหาผลคูณรว่ ม

พหคุ ูณของจานวนนบั ใด เป็นผลคณู ของจานวนนบั นั้น ซง่ึ สามารถหารด้วย
จานวนนบั นั้นได้ลงตวั

ผลคณู ร่วมของจานวนนับตั้งแต่ 2 จานวนข้ึนไป เปน็ จานวนนับทีห่ ารดว้ ย
จานวนนับเหลา่ น้ันไดล้ งตัว

ผลคูณร่วมทีน่ อ้ ยทีส่ ดุ ใชอ้ กั ษรยอ่ ค.ร.น.

ค.ร.น. ของจานวนนับตั้งแต่ 2 จานวนขนึ้ ไป หมายถงึ จานวนนับที่น้อยทีส่ ดุ
ทีห่ ารด้วยจานวนนบั เหลา่ นั้นได้ลงตวั

ตัวอย่างท่ี 1 … จุดสามจุดต่อทา้ ย
หา ค.ร.น. ของ 3 และ 5 หมายถงึ ยังมผี ลคูณอ่ืน ๆ อีก
ไปเร่ือยๆ ไมส่ ิน้ สุด

วธิ ที า จานวนนบั ที่เป็นผลคณู ของ 3 ไดแ้ ก่ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, …

จานวนนบั ทเ่ี ปน็ ผลคณู ของ 5 ไดแ้ ก่ 5, 10, 15, 20, 25, 30, 35, 40, …

จานวนนับที่เปน็ ผลคณู รว่ มของ 3 และ 5 ไดแ้ ก่ 15, 30, …

ซง่ึ ผลคณู ร่วมท่นี อ้ ยทส่ี ดุ ของ 3 และ 5 คือ 15

ดังนนั้ ค.ร.น. ของ 3 และ 5 คอื 15

ตอบ ๑๕ ค.ร.น. ทไี่ ดจ้ ะมากกว่า หรือเทา่ กบั จานวนนับ

ตัวอยา่ งที่ 2 ทมี่ ากท่สี ดุ ในบรรดาจานวนนบั ทีน่ ามาหา ค.ร.น.

หา ค.ร.น. ของ 4 6 และ 12

วธิ ีทา จานวนนับที่เป็นผลคณู ของ 4 ได้แก่ 4, 8, 12, 16, 20, 24, 28, 32, 36, …

จานวนนบั ทีเ่ ปน็ ผลคณู ของ 6 ได้แก่ 6, 12, 18, 24, 30, 36, 42, 48, …

จานวนนบั ท่ีเปน็ ผลคณู ของ 12 ไดแ้ ก่ 12, 24, 36, 48, 60, 72, 84, 96, …

จานวนนับทีเ่ ปน็ ผลคณู รว่ มของ 4 6 และ 12 ได้แก่ 12, 24, 36, …

ซ่งึ ผลคณู ร่วมทนี่ อ้ ยทสี่ ดุ ของ 4 6 และ 12 คอื 12 มผี ลคูณร่วมหลายจานวน
แตจ่ ะเลอื กผลคณู รว่ ม
ดังนน้ั ค.ร.น. ของ 4 6 และ 12 คอื 12 ท่นี อ้ ยทีส่ ุด คือ 12

ตอบ ๑๒

ใบงาน ตามตวั ช้วี ดั 22
รวมคะเเนน
เรอ่ื ง การหา ค.ร.น. โดยการหาผลคณู รว่ ม

ค 1.1 ป.6/5 หา ค.ร.น. ของจานวนนบั ไมเ่ กิน 3 จานวน

คาช้ีแจง ใหน้ ักเรยี นแสดงวิธีทาหา ค.ร.น. โดยการหาผลคณู รว่ ม

หา ค.ร.น. ของ 6 และ 9

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

หา ค.ร.น. ของ 16 และ 20

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

ชอ่ื ……………………………………………………..…… ชัน้ …………… เลขท่ี ……

23

หา ห.ร.ม. ของ 15 25 และ 30

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

หา ห.ร.ม. 20 40 และ 80

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

หา ห.ร.ม. ของ 6 12 และ 36

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

ใบความรู้ 8 24

เร่ือง การหา ค.ร.น. โดยการแยกตวั ประกอบ

ขนั้ ตอน

1 แยกตวั ประกอบของแตล่ ะจานวนทโ่ี จทย์กาหนด

2 สังเกตวา่ มีตวั ประกอบเฉพาะจานวนใดบา้ งทีเ่ ปน็ ตวั ประกอบรว่ ม
ถา้ ซา้ กนั ใหเ้ ลอื กมา 1 ตวั

3 นาตวั หารและผลหารของทุกจานวนมาคูณกัน
ผลคณู ทีไ่ ดจ้ ะเป็นตวั คูณรว่ มท่นี ้อยท่สี ดุ

ตวั อยา่ งท่ี 1 ถ้าเป็นตวั ท่ซี า้ กันจะเลอื ก
หา ค.ร.น. ของ 18 และ 24 มาเพียง 1 ตวั เท่าน้นั

วิธีทา 18 = 3 × 3 × 2 ผลคูณของ 18 ผลคณู ของ 24
24 = 2 × 2 × 2 × 3 18 × 1 = 18 24 × 1 = 24
18 × 2 = 36 24 × 2 = 28
ดังนนั้ ค.ร.น. คือ 3 × 3 × 2 × 2 × 2 = 72 18 × 3 = 54 24 × 3 = 72
ตอบ ๗๒

18 × 4 = 72

ผลคณู ร่วมทน่ี ้อยทสี่ ดุ
ของ 18 และ 24 คอื 72

ตัวอยา่ งที่ 2 ถา้ จานวนใดทไ่ี มซ่ า้ ใหน้ ามาคณู ทกุ ตวั
แตถ่ ้ามีซา้ อย่างนอ้ ยเพียงสองตัว
หา ค.ร.น. ของ 12 15 และ 42 ก็ตอ้ งเลอื กมา 1 ตวั เทา่ น้นั

วิธที า 12 = 2 × 2 × 3
15 = 5 × 3
42 = 2 × 3 × 7

ดงั นั้น ค.ร.น. คือ 2 × 2 × 5 × 3 × 7 = 420
ตอบ ๔๒๐

ใบงาน ตามตัวชีว้ ัด 25
รวมคะเเนน
เรอ่ื ง การหา ค.ร.น. โดยการแยกตัวประกอบ

ค 1.1 ป.6/5 หา ค.ร.น. ของจานวนนับไมเ่ กนิ 3 จานวน

คาชีแ้ จง ให้นักเรียนหา คร.น. ของจานวนตอ่ ไปน้โี ดยการแยกตวั ประกอบ

ตวั อยา่ ง 1.

_1_8___7_2__แ_ล__ะ_4_5__________________ 4_8___แ_ล_ะ__5_6______________________
ว_ธิ__ีท_า____1_8__=__2__×__3__×__3__________ _ว_ธิ _ีท__า__________________________
________7_2__=__2__×__2__×__2__×__3__×__3_
________4_5__=__3__×__3__×__5__________ _______________________________

______________________________ _______________________________
ด_ัง_น_ั้น_ค__.ร_.น_. _ค_ือ_2_×__3_×__3_×__2_×__2_×__5_=__3_6_0
_______________________________
ต_อ__บ___๓_๖__๐______________________
_______________________________
2.
ต__อ_บ____________________________
อยา่ ลมื วา่ การหา ค.ร.น. สามารถ

หารตอ่ ได้อีก ถึงแมจ้ ะหาตัวหารรว่ ม

3. ไดเ้ พียงสองจานวนจากสามจานวนที่
โจทย์กาหนดก็ตาม

_1_6__1_2___แ_ล_ะ__3_2__________________ _2_8___7_0___แ_ล_ะ___4_9________________
_ว_ิธ__ีท_า__________________________ _ว_ธิ _ที__า__________________________

_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________

_ต_อ_บ____________________________ _ต_อ_บ____________________________

ช่อื ……………………………………………………..…… ช้ัน …………… เลขท่ี ……

ใบความรู้ 9 26

เรอื่ ง การหา ค.ร.น. โดยการหาร

ข้ันตอน หาจานวนท่หี ารจานวนทโี่ จทย์กาหนดได้ลงตัว
นาจานวนทไี่ ด้จากข้อ 1. หารจานวนทั้งหมดที่โจทยก์ าหนดให้
1 การหารจะส้นิ สดุ เมอื่ ไมม่ ีตัวหารร่วมแลว้ หรอื ตวั หารรว่ มเปน็ 1
2 นาตัวหารและผลหารของทกุ จานวนมาคณู กัน

3

4

ตวั อย่างท่ี 1
หา ค.ร.น. ของ 54 และ 81

หาตวั หารรว่ มของ 54 และ 81 3 54 81 2 และ 3 ไม่มีตวั หารร่วมแลว้
เช่น 3 แลว้ นามาหารทงั้ สองจานวน 3 18 27 นอกจาก 1 จงึ สิ้นสุดการหาร
36 9
3 เป็นตัวหารรว่ มของ 18 และ 27 3 นาตวั หารและผลหาร
นา 3 มาหารทง้ั สองจานวนได้ 2 ของทกุ จานวนคูณกนั

ดังนัน้ ค.ร.น. คอื 3 × 3 × 3 × 2 × 3 = 162

ตอบ ๑๖๒ ตัวหาร

ตวั อยา่ งที่ 2 ผลหาร

หา ค.ร.น. ของ 64 96 และ 112

หาตัวหารร่วมของ 64 96 และ 112 8 64 96 112
เชน่ 8 แลว้ นามาหารทั้งสามจานวน

จานวนนบั ท่นี ามาหาร 4 8 12 14 ถ้าหา ค.ร.น. สามารถหารต่อได้
กรณีที่หาตัวหารรว่ มไดเ้ พยี งสองจานวน
จะเปน็ จานวนเฉพาะ 2 2 3 14 คือ 8 และ 12 กห็ ารต่อไดเ้ ลย สาหรบั 14
หรอื ไมเ่ ป็นจานวนเฉพาะก็ได้ ใหเ้ ขียนไว้เชน่ เดมิ

1 37

ดังนน้ั ค.ร.น. คือ 8 × 4 × 2 × 1 × 3 × 7 = 1,344

ตอบ ๑,๓๔๔

ใบงาน ตามตวั ชี้วัด 27
รวมคะเเนน
เรอ่ื ง การหา ค.ร.น. โดยการหาร

ค 1.1 ป.6/5 หา ค.ร.น. ของจานวนนับไมเ่ กิน 3 จานวน

คาชี้แจง ให้นักเรยี นหา คร.น. ของจานวนต่อไปนี้โดยวธิ ีตงั้ หาร

ตัวอย่าง 1.

_7_5__แ__ล_ะ_1_0__5____________________ 3_3___แ_ล__ะ_3_9______________________
ว_ธิ__ีท_า_____5____7__5_____1_0_5_________ _ว_ิธ_ที __า__________________________
_________5_____15_______2_1_________
_______________________________
ส้นิ สุดการหาร
_______________________________
ตจา้อนงหวนารเฉจ_นพก_าวะ_า่ ผ_ล_ห_าร_เป_็น______3_______7__________
_______________________________
[ 3 และ 5 เปน็ จานวนเฉพาะ ]
_______________________________
______________________________
ต__อ_บ____________________________
ด_ัง_น_ัน้ __ค__.ร_.น__. _ค_ือ__5_×__5_×_3__×_7__=__5_2__5__
ต_อ__บ___๕_๒__๕______________________ อยา่ ลืมวา่ การหา ค.ร.น. สามารถ
หารตอ่ ไดอ้ กี ถงึ แมจ้ ะหาตวั หารรว่ ม
2. ได้เพยี งสองจานวนจากสามจานวนที่

3. โจทยก์ าหนดก็ตาม

_3_3___7_7___แ_ล_ะ__8_4_________________ _2_1___4_2__แ__ล_ะ__5__6________________
_ว_ธิ __ที _า__________________________ _ว_ธิ _ที__า__________________________

_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________
_______________________________ _______________________________

_ต_อ_บ____________________________ _ต_อ_บ____________________________

ชือ่ ……………………………………………………..…… ชัน้ …………… เลขท่ี ……

ใบงาน ตามตัวชีว้ ดั 28
รวมคะเเนน
เรอ่ื ง การหา ค.ร.น.

ค 1.1 ป.6/5 หา ค.ร.น. ของจานวนนับไมเ่ กิน 3 จานวน

คาชแ้ี จง ใหน้ ักเรียนหา ค.ร.น. ของจานวนตอ่ ไปนี้

ตวั อย่าง 10 และ 57

570

1 28 และ 70
2 18 และ 42
3 30 40 และ 60
4 16 64 และ 40
5 44 66 และ 132

ชอื่ ……………………………………………………..…… ชนั้ …………… เลขท่ี ……

ใบความรู้ 10 29

เร่ือง ความสมั พนั ธ์ระหวา่ ง ห.ร.ม. กบั ค.ร.น.

ของจานวนนบั สองจานวน

พจิ ารณาหาความสัมพันธร์ ะหวา่ ง ห.ร.ม. กบั ค.ร.น. ของจานวนนับสองจานวน

ข้อ จานวนท่ี ห.ร.ม. ค.ร.น. ผลคูณของ ผลคูณของจานวน

กาหนด ห.ร.ม. กับ ค.ร.น. ที่กาหนด

1. 4 และ 6 2 12 24 2 × 12 = 24 24 4 × 6 = 24

2. 8 และ 12 4 24 96 96

3. 9 และ 10 1 90 90 90

4. 15 และ 18 3 90 270 270

5. 25 และ 20 5 100 500 500

จากตารางสงั เกตไดว้ า่ เม่อื กาหนดจานวนนบั 2 จานวน จะพบว่า
ผลคณู ของ ห.ร.ม. กบั ค.ร.น. จะเท่ากับ ผลคณู ของสองจานวนนน้ั

ห.ร.ม. × ค.ร.น. = ผลคณู ของสองจานวนท่ีกาหนด

ตวั อยา่ งที่ 1 จับนวนนับอกี จานวนหนง่ึ
มคี ่าเทา่ กับเท่าใด (ตอ้ งหา)

ถ้า ค.ร.น. ของ 12 กบั จานวนนับอกี จานวนหน่ึงเปน็ 60
และ ห.ร.ม. ของสองจานวนนเี้ ป็น 6 จานวนนบั อกี จานวนหน่งึ คอื จานวนใด

วธิ ีทา จาก ห.ร.ม. × ค.ร.น. = ผลคูณของสองจานวนทกี่ าหนด

ห.ร.ม. ค.ร.น.

จะได้ 6 × 60 = 12 × จานวนหนง่ึ ท่ีเราตอ้ งหา
360 = 12 ×
= 360 ÷ 12 จาก 360 = 12 ×
= 30
ดังนัน้ จานวนนบั อีกจานวน คือ 30 จะได้ 360 ÷ 12 =
หรอื = 360 ÷ 12 (ความหมายเดียวกนั )

ตอบ ๓๐

30

ห.ร.ม. × ค.ร.น. = ผลคณู ของสองจานวนท่ีกาหนด

ตวั อยา่ งท่ี 2

จานวนนับสองจานวน ถ้าจานวนหนึง่ เปน็ 24 และผลคูณของ ห.ร.ม. กบั ค.ร.น.
ของสองจานวนนี้ เปน็ 864 จานวนนบั อีกจานวนหนึง่ คอื จานวนใด

วธิ ีทา จาก ห.ร.ม. × ค.ร.น. = ผลคูณของสองจานวนท่กี าหนด

จะได้ 864 = 12 × จานวนหน่ึง หาจานวนนับอีกจานวนโดยใช้
ห.ร.ม. × ค.ร.น. 864 ÷ 12 = ความสัมพนั ธร์ ะหวา่ ง ห.ร.ม. กบั ค.ร.น.
ของจานวนนับสองจานวน
หรือ = 864 ÷ 12
= 72

ดงั น้นั จานวนนบั อีกจานวน คือ 72

ตอบ ๗๒

ตัวอย่างท่ี 3

ถา้ ห.ร.ม. ของจานวนนับสองจานวนเปน็ 4 และผลคูณของสองจานวนน้ัน
เปน็ 576 ค.ร.น. ของสองจานวนนเี้ ปน็ เทา่ ใด

วธิ ีทา จาก ห.ร.ม. × ค.ร.น. = ผลคูณของสองจานวนท่กี าหนด

จะได้ 4 × = 576 หา ค.ร.น. โดยใช้ความสมั พันธ์
= 576 ÷ 4 ระหว่าง ห.ร.ม. กบั ค.ร.น.
ของจานวนนบั สองจานวน

= 144

ดังนัน้ ค.ร.น. ของจานวนนบั สองจานวนน้ี คือ 144

ตอบ ๑๔๔

31

แบบฝึกหดั ท่ี 8 คะเเนน

คาช้ีแจง ใหน้ กั เรยี นแสดงวธิ ีหาคาตอบ

1.
ถ้า ค.ร.น. ของ 20 กับจานวนนบั อกี จานวนหนึ่งเป็น 60
และ ห.ร.ม. ของสองจานวนน้ีเป็น 10 จานวนนบั อีกจานวนหนึ่งคือจานวนใด

ว__ิธ_ที _า__________________________________________________________

______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________

_ต_อ_บ___________________________________________________________

2.
จานวนนับสองจานวน ถ้าจานวนหนึง่ เปน็ 21 และผลคูณของ ห.ร.ม. กบั ค.ร.น.
ของสองจานวนน้ี เป็น 588 จานวนนับอีกจานวนหนึง่ คอื จานวนใด

ว__ิธ_ที _า__________________________________________________________

______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________

_ต_ตอ_บอ_บ__________________________________________________________

32

3.
ถ้า ห.ร.ม. ของจานวนนับสองจานวนเปน็ 7 และผลคณู ของสองจานวนนั้น
เ_ป_น็__9__8_0__ค_._ร_.น_._ข__อ_ง_ส_อ_ง_จ_า_น_ว_น__น_้เี _ป_น็ _เ_ท_า่_ใ_ด___________________________
_ว_ิธ_ที __า_________________________________________________________

______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________

_ต_อ_บ___________________________________________________________

4.
ถา้ ค.ร.น. ของจานวนนับสองจานวนเป็น 90 และผลคูณของสองจานวนนัน้
เปน็ 1,350 ห.ร.ม. ของสองจานวนนีเ้ ปน็ เท่าใด

_ว_ิธ_ีท__า_________________________________________________________

______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________
______________________________________________________________

_ต_อ_บ___________________________________________________________

ใบความรู้ 11 33

เร่ือง โจทย์ปัญหาทีเ่ ก่ยี วกับ ห.ร.ม.

ตวั อย่าง

แนนนซ่ี อ้ื ผลไม้ 3 ชนิด คอื มะมว่ ง ฝรงั่ และสม้ จานวน 60, 75 และ 120 ผล
ตามลาดบั โดยตัง้ ใจจะจัดใส่ตะกร้าให้ไดม้ ากท่ีสดุ ตะกรา้ ละเทา่ ๆ กัน ไมใ่ ห้
เหลือเศษและไม่ปนกัน แนนน่จี ะต้องจัดใสต่ ะกรา้ ละกผ่ี ล

วเิ คราะห์โจทย์ปัญหา

สงิ่ ท่ีกาหนดให้ แนนนซี่ ้ือผลไม้ 3 ชนิด คอื มะมว่ ง ฝรั่ง และสม้
จานวน 60, 75 และ 120 ผล ตามลาดับ
โดยตง้ั ใจจะจดั ใสต่ ะกร้าใหไ้ ดม้ ากท่ีสดุ
ตะกรา้ ละเทา่ ๆ กนั ไมใ่ หเ้ หลอื เศษและไม่ปนกัน

สงิ่ ท่โี จทย์ถาม แนนนี่จะต้องจัดใส่ตะกรา้ ละกผี่ ล การจัดใสต่ ะกร้าเทา่ ๆ กนั
(คือการหาร) โดยมเี งื่อนไขวา่ จะตอ้ ง

การวางแผนแก้โจทยป์ ญั หา แบ่งจานวนผลไมท้ กุ ชนิดเทา่ ๆ กัน
โดยไมใ่ หเ้ หลอื เศษ แสดงวา่ เปน็ การ
มะม่วง 60 ผล ฝรัง่ 75 ผล และสม้ 120 ผล หาตัวหารรว่ มของผลไม้ท้งั 3 ชนิด
ตามลาดับ เนื่องจากตอ้ งจดั ใส่ตะกร้าให้ได้มากทส่ี ดุ น่ันเอง ในขอ้ นี้จึงตอ้ งหา ห.ร.ม. ของ
60, 75 และ 120 จ้า

ตะกร้าละเท่า ๆ กนั ไม่ให้เหลือเศษและไมป่ นกัน ดังน้นั จึงหา ตัวหารรว่ มมาก

ห.ร.ม. ของ 60, 75 และ 120

การแกป้ ัญหา

วิธที า มะมว่ ง 60 ผล ฝรัง่ 75 ผล และส้ม 120 ผล เลอื กวธิ ที ีเ่ พอื่ น ๆ ถนดั ไดเ้ ลย
หา ห.ร.ม. 60 75 และ 120 ได้ดังนี้ แต่ตวั อย่างนี้หา ห.ร.ม.
โดยใช้การหาร
จานวนทีห่ ารท้ัง 60, 75 5 60 75 120
และ 120 ได้ คอื 5

จานวนทีห่ ารทั้ง 12, 15 3 12 15 24
และ 24 ไดค้ ือ 3 45 8

ดังนัน้ ห.ร.ม. คือ 5 × 3 = 15 ถา้ เป็นการหา ห.ร.ม.
จะนามาคณู เฉพาะ ตวั หาร

ตอบ แนนนี่จะตอ้ งจดั ใสต่ ะกรา้ ละ ๑๕ ผล

ใบงาน ตามตัวช้ีวัด 34
รวมคะเเนน
เรอ่ื ง โจทย์ปญั หาทเี่ กี่ยวกับ ห.ร.ม.

ค 1.1 ป.6/6 แสดงวิธีหาคาตอบของโจทย์ปัญหาโดยใช้ความรู้
เกี่ยวกบั ห.ร.ม. และ ค.ร.น.

คาชี้แจง ใหน้ ักเรียนวิเคราะหโ์ จทยแ์ ละแสดงวธิ ที าโจทย์ปัญหาต่อไปนี้

หนูนิดมีดอกกหุ ลาบสามสี คือ กหุ ลาบสแี ดง 49 ดอก กุหลาบสีชมพู 63 ดอก
และกหุ ลาบสขี าว 84 ดอก ต้องการจัดใสแ่ จกนั จานวนเท่า ๆ กนั และไมป่ นกัน
โดยใหแ้ ตล่ ะแจกนั มีจานวนดอกกุหลาบมากทีส่ ุด หนูนิดจดั ได้แจกันละกด่ี อก

วิเคราะห์โจทยป์ ัญหา

...ส.....่ิง...ท.....โ่ี ...จ....ท......ย....์ก.....า...ห.....น.....ด....ใ....ห.....้ ............................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

....ส....่ิง...ท.....่โี ...จ....ท......ย....ถ์.....า...ม.................................................................................... ................................................................................................................................ ..........
การวางแผนแก้โจทย์ปญั หา

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ .........

การแก้ปญั หา
..ว....ิธ.....ีท.....า............................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

.ต....อ....บ.................................................................................................................... ................................................................................................................................ ..........

ชอื่ ……………………………………………………..…… ช้นั …………… เลขท่ี ……
.

ใบงาน ตามตัวช้วี ัด 35
รวมคะเเนน
เรอื่ ง โจทยป์ ญั หาทเ่ี กย่ี วกบั ห.ร.ม.

ค 1.1 ป.6/6 แสดงวิธหี าคาตอบของโจทย์ปัญหาโดยใช้ความรู้
เกย่ี วกบั ห.ร.ม. และ ค.ร.น.

คาชีแ้ จง ใหน้ กั เรยี นวิเคราะห์โจทยแ์ ละแสดงวิธที าโจทยป์ ัญหาต่อไปน้ี

แมนซื้อปลามาสามชนิด คือ ปลาทอง ปลาเงิน และปลาหางนกยูง จานวน 16,
44 และ 36 ตวั ตามลาดบั โดยตงั้ ใจจะปลอ่ ยลงในตู้ปลาให้ได้จานวนมากทสี่ ดุ
ตู้ละเทา่ ๆ กัน ไม่เหลอื เศษและไม่ปนกัน แมนจะต้องปล่อยปลาตู้ละก่ตี ัว

วิเคราะหโ์ จทยป์ ญั หา
...ส....่งิ ...ท.....โ่ี...จ....ท......ย.....์ก....า...ห......น....ด.....ใ...ห.....้ .............................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

....ส....งิ่ ...ท.....่ีโ...จ....ท......ย....ถ์.....า...ม..............................................................................................................................................................................................................................
การวางแผนแก้โจทยป์ ญั หา

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ .........

การแกป้ ัญหา
..ว....ิธ.....ที .....า.......................................................................................................................................................................................................................................................

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

ต.....อ....บ.................................................................................................................... ................................................................................................................................ ..........

ช่อื ……………………………………………………..…… ช้ัน …………… เลขท่ี ……
.

36

ใบความรู้ 12

เร่อื ง โจทย์ปญั หาที่เก่ยี วกบั ค.ร.น. หรือ 60 นาที

ตัวอย่าง

คุณแม่ตงั้ นาฬิกาปลกุ ไวส้ ามเรอื น ให้ปลกุ ทกุ ๆ 15 นาที 45 นาที และ 1 ชั่วโมง
ตามลาดบั เม่อื นาฬกิ าปลกุ พรอ้ มกนั แล้วหน่งึ ครัง้ อีกนานเท่าใดนาฬิกาทงั้ สามจึง
จะปลุกพรอ้ มกนั อีกครัง้

วเิ คราะหโ์ จทยป์ ญั หา

สิง่ ทก่ี าหนดให้ คณุ แม่ต้งั นาฬิกาปลกุ ไว้สามเรือน ให้ปลกุ ทุกๆ 15 นาที
ส่งิ ทโี่ จทยถ์ าม 45 นาที และ 1 ชว่ั โมง ตามลาดบั
เมอ่ื นาฬิกาปลกุ พรอ้ มกันแล้วหน่งึ ครง้ั

อีกนานเท่าใดนาฬิกาท้งั สามจึงจะปลุกพร้อมกนั อีกครงั้

การวางแผนแกโ้ จทยป์ ญั หา
เวลาท่นี าฬกิ าปลุกทั้งสามเรือนจะปลุกพรอ้ มกันเป็นตัวคณู รว่ มของ 15, 45
และ 60 เนือ่ งจากต้องการทราบเวลาครง้ั ต่อไปทน่ี าฬิกาปลกุ จะปลกุ พร้อมกัน
ดงั นนั้ จงึ หาตัวคูณรว่ มนอ้ ย ( ค.ร.น. ) ของ 15, 45 และ 60

การแกป้ ญั หา

วิธที า ตงั้ นาฬกิ าปลกุ ไวส้ ามเรอื น ให้ปลกุ ทุกๆ 15 นาที 45 นาที และ 1 ช่วั โมง

หรือ 60 นาที หา ค.ร.น. ของ 15, 45 และ 60 ไดด้ ังน้ี เลอื กวิธีทเ่ี พื่อน ๆ ถนัดได้เลย

จานวนที่หารทัง้ 15, 45 5 15 45 60 แตต่ วั อยา่ งนหี้ า ค.ร.น.
และ 60 ได้ คือ 5 โดยใช้การหาร

จานวนที่หารทง้ั 3, 9 33 9 12
และ 12 ได้คอื 3 13 4

ดงั น้ัน ค.ร.น. คอื 5 × 3 × 1 × 3 × 4 = 180 ถา้ เป็นการหา ค.ร.น.
จะนาท้ังตวั หารและผลหารของ
ทุกจานวนคณู กนั

นาฬิกาทั้งสามเรอื นจะปลุกพร้อมกันในคร้งั ตอ่ ไปอีก 180 นาที ข้างหน้า
ซง่ึ เทา่ กับอกี 3 ชั่วโมงข้างหน้านนั่ เอง

ตอบ อีก ๑๘๐ นาที นาฬิกาท้ังสามจงึ จะปลกุ พรอ้ มกันอีกครง้ั

ใบงาน ตามตัวช้วี ัด 37
รวมคะเเนน
เรอ่ื ง โจทย์ปัญหาท่เี ก่ยี วกบั ค.ร.น.

ค 1.1 ป.6/6 แสดงวิธหี าคาตอบของโจทย์ปัญหาโดยใชค้ วามรู้
เก่ยี วกบั ห.ร.ม. และ ค.ร.น.

คาชี้แจง ใหน้ ักเรยี นวเิ คราะหโ์ จทยแ์ ละแสดงวิธที าโจทยป์ ัญหาตอ่ ไปนี้

นกั กีฬาสามคนว่ิงรอบสนามแหง่ หน่ึง แต่ละคนวง่ิ รอบสนามใช้เวลา 16 นาที 24
นาที และ 32 นาที ตามลาดบั ถา้ นักกีฬาสามคนเร่มิ วิ่งเวลาเดยี วกนั ท่จี ุดเร่ิมต้น
อีกนานเทา่ ใดนักกีฬาท้งั สามคน จะว่ิงมาทันกนั ท่จี ุดเริ่มตน้ อีกครัง้

วิเคราะหโ์ จทย์ปญั หา
...ส....งิ่ ...ท.....โี่...จ....ท......ย.....์ก....า...ห......น....ด.....ใ...ห.....้ .............................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

....ส....ิ่ง...ท.....ีโ่ ...จ....ท......ย....ถ์.....า...ม.................................................................................... ................................................................................................................................ ..........
การวางแผนแกโ้ จทยป์ ญั หา

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ .........

การแกป้ ัญหา
..ว....ิธ.....ที .....า.......................................................................................................................................................................................................................................................

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

ต.....อ....บ.................................................................................................................... ................................................................................................................................ ..........

ชอ่ื ……………………………………………………..…… ช้ัน …………… เลขที่ ……
.

ใบงาน ตามตวั ช้วี ดั 38
รวมคะเเนน
เรอื่ ง โจทยป์ ญั หาทเ่ี กี่ยวกับ ค.ร.น.

ค 1.1 ป.6/6 แสดงวิธีหาคาตอบของโจทย์ปัญหาโดยใชค้ วามรู้
เก่ียวกบั ห.ร.ม. และ ค.ร.น.

คาช้แี จง ใหน้ กั เรยี นวเิ คราะหโ์ จทยแ์ ละแสดงวธิ ีทาโจทย์ปัญหาตอ่ ไปน้ี

กล่องใบแรกสงู 32 เซนตเิ มตร และกลอ่ งใบทีส่ องสูง 36 เซนตเิ มตร เนอื่ งจาก
ตอ้ งการนากลอ่ งที่เปน็ ชนดิ เดียวกันมาวางซ้อนกนั ความสูงทนี่ อ้ ยทส่ี ุดที่ทาให้
กลอ่ งท้งั สองชนิดสงู เท่ากันคอื เท่าใด

วิเคราะห์โจทยป์ ญั หา
...ส....่ิง...ท.....โ่ี...จ....ท......ย.....ก์ ....า...ห......น....ด.....ใ...ห.....้........................................................................................................................................................................................................

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

....ส....ิ่ง...ท.....โี่ ...จ....ท......ย....ถ์.....า...ม.................................................................................... ................................................................................................................................ ..........
การวางแผนแก้โจทยป์ ญั หา

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ .........

การแก้ปญั หา
..ว....ธิ .....ีท.....า.......................................................................................................................................................................................................................................................

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

............................................................................................................................. ................................................................................................................................ ..........

ต.....อ....บ.................................................................................................................... ................................................................................................................................ ..........

ชือ่ ……………………………………………………..…… ช้ัน …………… เลขท่ี ……
.

ใบความรู้ 13 39

เรอ่ื ง โจทยป์ ัญหาทีเ่ ก่ียวกับ ห.ร.ม. และ ค.ร.น.

ตวั อย่างท่ี 1

วินซ้อื อาหารกระปอ๋ ง 180 กระปอ๋ ง ซอ้ื น้าด่มื 240 ขวด และซ้ือบะหมีก่ งึ่ สาเร็จรปู
330 หอ่ นามาจดั ใส่ถุงยังชีพจานวนเทา่ ๆ กนั โดยไมเ่ หลือเศษเพือ่ บริจาคให้
ผู้ประสบภยั น้าท่วมจะได้ทง้ั หมดก่ถี งุ และแตล่ ะถุงมจี านวนของอย่างละกช่ี ิ้น

แนวคิด หา ห.ร.ม. ของ 180, 240 และ 330 ได้ดังน้ี ลองตรวจสอบถา้ ของแตล่ ะชนดิ จัดถงุ ยงั ชพี ได้ 30 ถุง
จะตรงกบั ท่เี ราหาคาตอบจาก ห.ร.ม. หรือไม่
10 180 240 330
จานวนของทัง้ หมด ÷ จานวนถงุ = จานวนของ (ชิ้น) ต่อจานวน 1 ถงุ
3 18 24 33
6 8 11 180 ÷ 30 = 6 (อาหารกระป๋อง)
240 ÷ 30 = 8 (น้าด่ืม)
330 ÷ 30 = 11 (บะหม)่ี

ดงั นน้ั ห.ร.ม. คือ 10 × 3 = 30
จะได้อาหารกระป๋อง 6 กระป๋อง นา้ ดื่ม 8 ขวด และบะหมีก่ ึงสาเร็จรูป 11 หอ่

ตอบ วินจะจดั ถุงยงั ชพี ได้ 30 ถุง แต่ละถุงจะได้อาหารกระปอ๋ ง 6 กระป๋อง
นา้ ดืม่ 8 ขวด และบะหมก่ี งึ สาเรจ็ รูป 11 หอ่

ตวั อย่างที่ 2

ลิซ่า เจนน่ี และจซี ู วิ่งออกกาลงั กายรอบสวนสาธารณะแห่งหนงึ่ โดยแต่ละคนวง่ิ
รอบสวนสาธารณะ 1 รอบ ใช้เวลา 10, 15 และ 20 นาที ตามลาดับ ท้งั สามคน
เร่ิมวิง่ เวลาเดยี วกนั ที่จดุ เร่มิ ตน้ อกี นานเทา่ ใดที่ทัง้ สามคน จะว่ิงมาทนั กัน
ทจ่ี ดุ เร่มิ ต้นอีกครั้ง

แนวคดิ หา ค.ร.น. ของ 10, 15 และ 20 ได้ดงั น้ี

5 10 15 20 ถ้าเป็นการหา ค.ร.น. ยงั หารตอ่ ไดจ้ า้
ถงึ แม้วา่ จานวนที่นามาหาร
22 3 4 จะหารไดล้ งตัวแค่ 2 จานวนกต็ าม

13 2

ดงั นนั้ ค.ร.น. คอื 5 × 2 × 1 × 3 × 2 = 60
ทัง้ สามคนจะวง่ิ มาทันกนั ทจี่ ุดเรม่ิ ต้นอกี คร้ังในอีก 60 นาทขี า้ งหนา้ หรือ 1 ชัว่ โมง

ตอบ ทั้งสามคนจะวิ่งมาทันกันทีจ่ ุดเริม่ ตน้ อกี ครัง้ ในอกี 60 นาทีขา้ งหนา้
หรอื 1 ชั่วโมง

ใบงาน ตามตวั ชีว้ ัด 40
รวมคะเเนน
เร่ือง โจทยป์ ัญหาท่ีเกีย่ วกบั ห.ร.ม. และ ค.ร.น.

ค 1.1 ป.6/6 แสดงวธิ หี าคาตอบของโจทยป์ ัญหาโดยใชค้ วามรู้
เก่ยี วกบั ห.ร.ม. และ ค.ร.น.

คาชแี้ จง ให้นักเรยี นเติมคาตอบของโจทยป์ ัญหาท่กี าหนดให้ตอ่ ไปน้ี

นานมิ ขี นมไทยสามชนดิ ขนมหมอแกง 30 ชิน้ ขนมช้นั 45 ชิ้น และขนม
เปยี กปูน 60 ชิ้น นานติ อ้ งการจดั ขนมใส่กล่องโดยเป็นขนมชนดิ เดยี วกัน
กล่องละเท่า ๆ กนั นานจิ ะจดั ขนมได้มากทีส่ ดุ กลอ่ งละกช่ี ้นิ และขนมแตล่ ะ
ชนดิ จัดได้กก่ี ลอ่ ง

จงหาวา่ นานจิ ดั ขนมใสก่ ลอ่ งได้มากทีส่ ดุ กลอ่ งละ.....................................ชิ้น

ขนมหมอแกง จัดได้.................................... กล่อง

ขนมช้ัน จดั ได้.................................... กลอ่ ง

ขนมเปยี กปนู จัดได้.................................... กล่อง

แอนมเี ชอื กสามชนิด ชนดิ A ยาว 65 เซนติเมตร ชนดิ B ยาว 39
เซนตเิ มตร และชนดิ C ยาว 26 เซนติเมตร เนื่องจากตอ้ งการตดั แบง่ เปน็
เสน้ ยาวเส้นละเทา่ ๆ กนั ให้แต่ละเส้นมคี วามยาวทส่ี ดุ และไมเ่ หลอื เศษ

จงหาวา่ แอนตัดเชอื กแต่ละชนดิ ได้ยาว...............................................เซนตเิ มตร

ตัดเชอื กชนดิ A ได้ ................................................เส้น

ตดั เชอื กชนดิ B ได้ ................................................เสน้

ตัดเชือกชนดิ C ได้ ................................................เสน้

และแอนตัดเชือกไดท้ ั้งหมด ................................................เสน้

ตองมเี ชือกยาวจานวนหนงึ่ ตัดแบง่ เชอื กเปน็ เส้นยาวเสน้ ละ 3 เมตร 12
เมตร และ 5 เมตร จงหาความยาวของเชอื กท่สี ้ันท่ีสดุ ที่ตองมี
จงหาว่า ความยาวของเชอื กที่ส้ันทส่ี ุดที่ตองมี คือ ............................................... เมตร

ชอ่ื ……………………………………………………..…… ชน้ั …………… เลขที่ ……


Click to View FlipBook Version