The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

2009 by A. Bemporad Controllo di Processo e dei Sistemi di Produzione ‐ A.a. 2008/09 /94 Model Predictive Control

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2017-02-03 08:10:03

Model Predictive Control: Basic Concepts - Penn Engineering

2009 by A. Bemporad Controllo di Processo e dei Sistemi di Produzione ‐ A.a. 2008/09 /94 Model Predictive Control

Observer
Design
for
M

r(t) Optimizer u(t)

Reference

x(t)

state
estimate

•
Full
state
x(t)
may
not
be
availa
•
Even
if
available,
noise
should
b
•
State
of
prediction
model
may
b




(e.g.:
model
reduction,
identifica

©
2009
by
A.
Bemporad we
need
to
use


Controllo
di
Processo
e
dei
Siste

MPC y(t) measured

Plant outputs

Observer

able
be
filtered
out
be
different
from
plant
model
x(t)

ation)


a
state
observer
 76 /94

emi
di
Produzione
‐
A.a.
2008/09

Model
for
Observer
De

u(k) MVs
(Manipulated
Variables)

v(k) MDs
(Measured
Disturbances) Plan
mod
nd(k) Unmeasured
 d(k)
disturbance

white
noise
 UMDs

innovations model (Unmeasured
Disturbances)

nm(k

white
nois
innovation

unmeasured
disturbance
model

•
Note:
meas.
noise
model
not
needed
for

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

esign

nt
 CVs
(Controlled
Variables) yu(k)
del (Unmeasured

Outputs)

k) m(k)Measurement zm(k)

++
MOs

y (k)noise

se
 model m
ns
(Measured
Outputs)

measurement
noise
model

r
optimization
! 77/94

emi
di
Produzione
‐
A.a.
2008/09

Observer
Design

•
Measurement
update

•
Time
update

•NOTE:
separation
principle
holds
!
(und


(Muske,
Meadows,
Rawlings,
ACC94)

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

der
certain
assumptions)
 78 /94

emi
di
Produzione
‐
A.a.
2008/09

Kalman
Filter
Design

•
Full
model
for
designing
observer
gain
M

•
nd(k):
represents
source
for
modeling
e
•
nm(k):
represents
source
for
measurem
•
nu(k):
white
noise
on
all
inputs
u
added

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

M

Rudolf
Emil

Kalman
(1930
‐
)

errors
ment
noise
d
for
solvability
of
the
Riccati
equation

emi
di
Produzione
‐
A.a.
2008/09 79 /94

Integral
Action
in
MPC

(and
not
only
in
MPC)

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

emi
di
Produzione
‐
A.a.
2008/09 80 /94

Output
Integrators

u(k)

v(k) Pla
mo
nd(k) Unmeasured
 d(k)
disturbance

white
noise

innovations model

ni(k) O
Inte
white
noise

innovations n

•
Introduce
output
integrators
as
additio

•
Under
certain
conditions,
observer
+
co




steady‐state

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

ant
 + yu(k)
odel + zm(k)

Output
egrators

nm(k) Measurement ++ ym(k)

white
noise
 noise
 m(k)
innovations model

onal
disturbance
models
ontroller
provide
zero
offset
in


emi
di
Produzione
‐
A.a.
2008/09 81 /94

Integrators
and
Steady‐St

•
More
generally,
add
integrators
on
states

n

iwnnh

•
Use
the
above
model
+
meas.noise
mode


(e.g.
Kalman
filter)

•
Main
idea:
observer
makes
MPC
makes

)



the
combination
makes

•
Explanation:














compensates
model

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

tate
Offsets

s
+
outputs: Plant
 yu(k)
model
u(k) + ym(k)
v(k)
+

ni(k) Output d(k) Ddm
nhoitvea
ntoioisnes
 Integrators
Ddmd(k)


el
to
design
an
observer

(estimation
error)
(predicted
tracking
error)
(actual
tracking
error)

l
mismatch
in
steady‐state 82 /94

emi
di
Produzione
‐
A.a.
2008/09

Error
feedback

•
Idea:
add
integrals
of
measured
outputs
a




state‐feedback
case)

•
Extended
prediction
model:

•
Implementation:

•
Explanation:
if
closed‐loop
asymptotically




and
hence
y(k)
!
r(k)

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

as
additional
states
(similar
to
linear


(Kwakernaak,
1972)

y
stable
)
q(k)
!
cost. 83 /94

emi
di
Produzione
‐
A.a.
2008/09

Reference
Governor

•
Idea:
Apply
MPC
as
the
set‐point
gener



(e.g.:
PID)


actual
reference

r(k) w(k) Local
Feedba
desired Reference
reference Governor

estimated
plant
state
+
controller
s

•
Separation
of
problems:

‐
Local
feedback
designed
for
stability,
dist


without
taking
care
of
constraints

‐
Actual
reference
w(t)
generated
on‐line
b





Objective:


©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

rator
to
linear
feedback
loops

(Bemporad,
1997)

control constrained
input outputs

u(k) c(k)
ack Plant
y(k)
¼
r(k)

measured
outputs

Primal
System

x(k)

state

turbance
attenuation,
good
tracking,
by
an
MPC
algorithm
to
take
care
of
constraints

emi
di
Produzione
‐
A.a.
2008/09 84 /94

MPC
frequency
analysis


• Unconstrained
MPC
gain
+
linear
o
(=
2
d.o.f.
dynamic
controller)

• Closed‐loop
MPC
analysis
can
be
p
frequency‐domain
tools
(e.g.
Bod

u(t) Plant
x(t)

MPC
^xe(t)

In
MPC
Tbx:
ss(mpc)
or
tf(mpc)
return
the
LT
(=no
constraints)
MPC
object

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste


(inactive
constraints)

observer
=
linear
dynamical
system


performed
using
standard

de
plots
for
sensitivity
analysis)

t ym(t)

C
r(t)

TI
discrete‐time
form
of
the
linearized
 85 /94

emi
di
Produzione
‐
A.a.
2008/09

Controller
matching
pro

•
Given
the
controller
u=Kx,
find
we




such
that

− I 0 ... 0





that
is,
the
MPC
controller
coincid




are
not
active

•
QP
matrices:

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

oblem

(Di
Cairano,
Bemporad,


eights
Q,R,P

foErC
Ct’h0e9)
MPC
problem




H−1F = Kfv

des
with
Kfv

when
the
constraints


emi
di
Produzione
‐
A.a.
2008/09 86 /94

Controller
matching
pro

•
Open‐loop
process:


•
Constraints:
•
Desired
controller
(PID):


•
State‐space
form:

©
2009
by
A.
Bemporad controller
matching
based
on
inverse
LQR

Controllo
di
Processo
e
dei
Siste

oblem
‐
Example

emi
di
Produzione
‐
A.a.
2008/09 87 /94

Controller
matching
pro

%&'(&')*+,-

$!

#!

!

!#!

!$! " #! #"
!

01(&')&+,-

/!

$!

!

!$!

!/!

!.! " #! #"
!

what PID would
matched MPC

Note:
it’s
not
trivially
a
saturation
o
sat(PID)
leads
to
instability

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

oblem
‐
Example

%&'(&')*+,-

$! " #! #"
#!
01(&')&+,-
!
!#! " #! #"
!$!
add
output
constraint
y(k)≥-5
!

/!
$!

!
!$!
!/!
!.!

!

d apply

of
PID
controller.
In
this
case

emi
di
Produzione
‐
A.a.
2008/09 88 /94

Example:
MPC
of
a
DC
Se

R

Ve µM Tr µs
JM

bM r

go
to
demo

/demos/linea
mpcmotor

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

ervomotor

sT µL

JL

bL

ar/dcmotor.m (Hyb‐Tbx)
r.m (MPC‐Tbx)

emi
di
Produzione
‐
A.a.
2008/09 89 /94

DC
Servomotor
‐
Model

R

Ve µM Tr µs
JM

bM r

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

sT µL

JL

bL

Step
Response

0

0 5 Time
(sec)10 90 /9415

emi
di
Produzione
‐
A.a.
2008/09

DC
Servomotor:
Specs

R

Ve µM Tr µs
JM

bM r

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

sT µL

JL

bL

emi
di
Produzione
‐
A.a.
2008/09 91 /94

DC
Servomotor:
Exercise

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

emi
di
Produzione
‐
A.a.
2008/09 92 /94

DC
Servomotor:
MPC

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

emi
di
Produzione
‐
A.a.
2008/09 93 /94

DC
Servomotor:
MPC

©
2009
by
A.
Bemporad Controllo
di
Processo
e
dei
Siste

emi
di
Produzione
‐
A.a.
2008/09 94 /94


Click to View FlipBook Version