Cycle polytope
A relaxation of the marginal
Inherits all constraints of the
tight
In addition, enforces consiste
Cycle inequalities [B93]
∀ cycles C and every subse
(µij (0, 0) + µij (1, 1))
(i ,j )∈F
Cycle polytope = marginal p
MRFs [B93]
Cycle polytope = TRI for bin
polytope
local polytope, hence at least as
ency around any cycle
et of edges F ⊆ C with |F | odd:
)+ (µij (1, 0) + µij (0, 1)) ≥ 1.
(i,j)∈C \F
olytope for symmetric planar
nary pairwise [S10]
42 / 46
Threshold for attractive mode
Bethe free energy E−S00
Bethe free energy E−SB
B−0.5 −0.2
Bethe entropy S
−0.4
B−1
−0.6
−1.5 −0.80
0 0.5 1
q
K5 : W = 1 W=
4
3
2
1
Energy E 0 1
0 0.5 1
q
W =1
2.5
2
1.5
1
0.5
0
0 0.5
q
els ξij (qi , qj , Wij )
Bethe free energy E−SB 0
−0.1
−0.2
−0.3
0.5 1 −0.40 0.5 1
q q 43 / 46
= 1.38 W = 1.75
0.4
Bethe entropy S 0.2
B 0
−0.2
−0.4 0.5 1
0 q 1
W = 4.5
2.5
2
Energy E 1.5
1
0.5
00 0.5
q
Experiments: Attractive mode
1 Bethe+local
0.8 Bethe+cycle
0.6 Bethe+marg
0.4 TRW+local
0.2 TRW+cycle
TRW+marg
0
0.4 2 4 8 12 16
Maximum coupling strength y
log partition error
For this distribution of models,
the polytope appears to make
no difference
Though recall we showed
theoretically it can
els θi ∼ [−0.1, 0.1]
0.5
0.4
0.3 Bethe+local
0.2 Bethe+cycle
0.1 Bethe+marg
TRW+local
0 TRW+cycle
0.4 TRW+marg
0.1 24 8 12 16
Maximum coupling strength y
Singleton marginals, average 1 error
0.08
0.06
Bethe+local
0.04 Bethe+cycle
Bethe+marg
0.02 TRW+local
TRW+cycle
TRW+marg
0 4 8 12 16
0.4 2 Maximum coupling strength y
Pairwise marginals, average 1 error (small scale)
44 / 46
Clamping variables: Attractive
ZB = optimal Bethe partition
Clamp variable Xi , form new
ZB(i) = ZB |Xi =0 + ZB |Xi =1.
Theorem (WJ14 NIPS)
For an attractive binary pairwise m
ZB ≤ ZB(i).
Corollary
For an attractive binary pairwise m
⇒ clamping only improves the est
e binary pairwise models
n function for original model
approximation
model and any variable Xi ,
model, ZB ≤ Z .
timate of the partition function.
45 / 46
Clamping variables: stronger r
For any i ∈ V, x ∈ [0, 1], let
log ZBi (x ) = maxq∈[0,1]n:qi =x
Observe log ZBi (0) = log ZB |
and log ZB = maxqi ∈[0,1] log Z
Recall Si (x) = −x log x − (1
result
−F (q)
|Xi =0, log ZBi (1) = log ZB |Xi =1
ZBi (qi )
− x) log(1 − x) singleton entropy
46 / 46
Clamping variables: stronger r
For any i ∈ V, x ∈ [0, 1], let
log ZBi (x ) = maxq∈[0,1]n:qi =x
Observe log ZBi (0) = log ZB |
and log ZB = maxqi ∈[0,1] log Z
Recall Si (x) = −x log x − (1
Lemma: To prove clamping r
log ZBi (qi ) ≤ qi log ZBi (1) +
result
−F (q)
|Xi =0, log ZBi (1) = log ZB |Xi =1
ZBi (qi )
− x) log(1 − x) singleton entropy
result, sufficient if
(1 − qi ) log ZBi (0) + Si (qi )
46 / 46
Clamping variables: stronger r
For any i ∈ V, x ∈ [0, 1], let
log ZBi (x ) = maxq∈[0,1]n:qi =x
Observe log ZBi (0) = log ZB |
and log ZB = maxqi ∈[0,1] log Z
Recall Si (x) = −x log x − (1
Lemma: To prove clamping r
log ZBi (qi ) ≤ qi log ZBi (1) +
Theorem (WJ14 NIPS)
For an attractive binary pairwise m
convex.
Uses earlier results on Hessia
result
−F (q)
|Xi =0, log ZBi (1) = log ZB |Xi =1
ZBi (qi )
− x) log(1 − x) singleton entropy
result, sufficient if
(1 − qi ) log ZBi (0) + Si (qi )
model, log ZBi (qi ) − Si (qi ) is
an
46 / 46