TOPI
PAR
DIFFEREN
❑1.1 First Order Parti
❑1.2 Second Order Pa
❑1.3 Extremum of Fu
Variables
❑1.4 Lagrange Multip
IC 1 :
RTIAL
NTIATION
ial Derivatives 1
artial Derivatives
unctions of Two
plier
1.1 – First Order Pa
COURSE FRAMEWORK AND ST
a) Compute the first order
involving two variables x
PHD
dy =V du + U dv
dx dx dx
PHB du dv
dx dx
dy V −U
=
dx V 2
PLn
dy = f (x)
dx f (x)
artial Derivatives
TUDENT LEARNING TIME (SLT)
r partial derivatives
x and y
PExp
1) Salin semula soalan
2) Darab DIFF kuasa
PKuasa
1) Kuasa datang ke depan
2) Salin semula dalam kurungan
3) Kuasa berkurang satu
4) Darab DIFF dalam kurungan
2
1. Functions of several var
variables in a single fun
For example : a) f (x, y)
b) Z (x, y
2. The first order partial
by differentiating the
to a particular variabl
other variables fixed
riables consist of few
nction.
) = x2 + y2 − x − y
) = ln (x − y 2 )
l derivative is obtained
e function with respect
le, by keeping the
d.
3
The First Order P
Description ‘ de
Partial derivative of f
x
z = f ( x, y)
f
with respect to x : y
Partial derivative of
z = f ( x, y)
with respect to y :
We know that f (
fx (x, y) = Z x and
Partial Derivative
Notations
el ’ operator f operator
z fx
x
z fy
y
(x, y) = Z then 4
d f y (x, y) = Z y
EXAMPLE 1:
Find fx and fy for f (x, y) =
Partial derivative of f
with respect to x
fx ( x, y) = 4x + 3y
= 2x2 + 3x y − 6y2
Partial derivative of f
with respect to y
fy ( x, y) = 3x −12 y 5
EXAMPLE 2:
Find f and f for each of th
x y
(a) f ( x, y) = 2x2 + 3y − 6y2
Ans : f = 4x , f = 3 −12 y
x y
he following :
(b) f ( x, y) = x2 y3 + x4 y
Ans : f = 2xy3 + 4x3 y , f = 3x2 y2 + x4 6
x y
EXAMPLE 3:
Find partial derivatives of f
and y
(a) f ( x, y) = ( x − 2y)3
(b) f ( x, y) = 4x2 + y2
(c) f ( )x, y = ex2y+2
(d ) f ( x, y) = ln ( x + 3y)2
( x, y) with respect to x
[Recall : The Power Rule]
[Recall : Square Root Functions]
[Recall : The Exponential Functions]
[Recall : Natural Logarithmic Functions]
7
Find partial derivatives of
and y
(a) f ( x, y) = ( x − 2 y)3 [Re
f f ( x, y) with respect to x
ecall : The Power Rule]
8
Find partial derivatives of
and y
(b) f ( x, y) = 4x2 + y2 [R
f f ( x, y) with respect to x
Recall : Square Root Functions]
9
Find partial derivatives of
and y
(c) f ( )x, y = ex2y+2 [Recall : T
f f ( x, y) with respect to x
The Exponential Functions]
10
Find partial derivatives of
and y
(d ) f ( x, y) = ln ( x + 3y)2 [
f f ( x, y) with respect to x
[Recall : Natural Logarithmic Functions]
11
EXAMPLE 4:
Find fx for each of the follow
(a) f ( )x, y = x e2 2x2 +4 y
Ans :
( )( )a fx = e2x2 +4 y (b) ex−2 y 1 ln (3x)
4x3 + 2x , fx = x +
[Using Product Rule : KAT+VU]
wing .
(b) f ( x, y) = ex−2y ln (3x)
12
EXAMPLE 5:
Find f y for each of the follow
(a) f ( x, y) = 3x − 5y
2xy −1
Ans :
(a) fy = 5 − 6x2 , (b) fy = 3y − 2x − 3y ln y
(2xy −1)2 y (3y − 2x)2
[Using Quotient Rule : KAT+VU]
wing .
(b) f ( x, y) = ln y
3y − 2x
13
EXAMPLE 6:
If z = ln x2 + y2, show that
x z + y z = 1
x y
14
15
EXAMPLE 7: x − 2y
x2 − 2y2
Given that z = . Show th
1 z − z = 1
+ 2y2 x y x2 − 2y2 2
( )hatx2
16
17
1.2 – Second Order
COURSE FRAMEWORK AND ST
a) Compute the second or
involving two variables
Partial Derivatives
TUDENT LEARNING TIME (SLT)
rder partial derivatives
x and y
18
❑ The second order partial derivativ
first order partial derivative with r
keeping the other fixed.
Description ‘ del
Partial derivative of fx ( fx ) =
with respect to x : x
Partial derivative of f y
with respect to y : ( f y ) =
Partial derivative of fx x
with respect to y :
Partial derivative of f y ( fx ) =
with respect to x : y
( f y ) =
x x
ve is obtained by differentiating the
respect to a particular variable, by
Notations
l ’ operator f operator
2 f 2z f xx
x2 x2 f yy
2 f 2z f xy
y 2 y 2
2z f yx
2 f yx
yx 2z 19
2 f xy
xy
EXAMPLE 8:
Given that f ( x, y) = 3x2 − 2xy
Find fxx, f yy, fxy and f yx,
y +5y2 .
20
21
EXAMPLE 9:
Find 2z , 2z , z for t
x2 y 2 y x
(a) z = x 2 y 3 + x 4 y
z xx = 2 y 3 + 12x 2 y, z xy = 6xy 2 + 4x3 , z yy = 6x 2 y
the following functions .
22
23