4. Subtract the following.
a. 4x – 2x b. 3y – y c. 8x2 – 3x2
d. 5a3 – 4a3 e. 6ab – 2ab f. 5xyz – xyz
g. 12b3 – 7b3
5. Add the following.
a. x + 3 and 2x + 5 b. 7a + 2b and 3b + 8a
c. 3a + b – 1 and 4a – b + 3 d. x + y + 2 and 3x + 2y –1
e. 4x2 + 3x + 7 and 3x + 2x2–5 f. 6x2 – 5y2 and 3y2 + y2
6. Subtract the following.
a. 2x + 3 from 5x – 2 b. 7xy + 5 from 9xy –3
c. 4x + 3y + 2 from 7x – 7y + 3 d. x2 + 3y2 from 6y2 + 2x2
e. 2a – 5b – 3 from 7a + 3b + 8 f. 3m + 2n – 4 from 8m – 5n + 6
7. Simplify the following.
a. x + 3x + 2y + 5y b. 4a – 3b – 2a + 5b
c. 5a2 + 2a2 – 3a2 – a2 d. 3a2 – 4a + 8a2 – 2a + 8
e. x2 + 3y2 – 3x2 + y2 + 5 f. 2x + 3y – 1 + 4x – 6y + 4
8. Simplify the following.
a. What should be added to 5a + 10 to get 7a + 20?
b. What should be added to 3x2 + 2x + 2 to get 6x2 + 4x + 3?
c. What should be subtracted from 8p – 3 to get 3p – 5?
d. What should be subtracted from 8x2+4xy+3y to get
3x2 – 6xy + y?
9. Find the perimeter of following shapes.
a. b.
3x – y 2x – 3
x+y 3x – y
2x + 3 3x + 2
c.
d. 3x + 5 2x
5x + 2y
2x 2+ 2x 2x – 3
Maths Zone - Grade 5 251
Multiplication and Division of Algebraic Expression
Multiplication While multiplying like
Look at the example: terms we add the exponent
of same base. Coefficient are
a. 4x × 3x = (4 × 3) × (x × x)
multiplied.
= 12x2
x2 × x3 x(2 + 3)
b. 3x2 × 5x3
= (3 × 5) x2 + 3 Same base
= 15 x5
Take common base
and add power.
c. 4x × 7y Only coefficients are Be sure !!
= 4 × 7 x × y multiplied. xm × xn = x m + n
= 28 xy
4 × 7 = 28 and x × y =xy
Multiply 2x × 3x2 = 2 × 3 × x × x2
d. (3x2 – 4) by 2x = 6 × x1 + 2
Solution: = 6 × x3
= 2x × (3x2 – 4) = 6x3
= 2x × 3x2 – 2x × 4 2x × 4 = 2 × x × 4 = 8x
= 6x3 – 8x
Be sure !!
Multiply separately the both
terms by 2.x.
252 Maths Zone - Grade 5
Exercise 12.3
1. Find the product of :
a. 2x × 3a b. x × 3x c. y × y × y
f. 3p3 × 2p
d. a2 × a2 e. 6b3 × 2b2 i. xy × xy
g. 2x2 × 3y h. 4x2y × xy c. y (y + 4)
f. x2 (x2 + 4)
j. 6a3b2 × 3ab2 i. x2y2 (3x + 2y)
2. Multiply
a. x ( x + 2) b. x (x –3)
d. 3x ( x – 5) e. 5x (x2 – 3)
g. 2ab (a + b) h. 3x (4y – x)
j. 7x × 2x2
Maths Zone - Grade 5 253
Division of Monomial by Monomial
Divide
While dividing the terms, express both numerator and denominator in
expanded form and cancel the common term. Let's discuss few examples:
a. 2m ÷ m = 2m = 2
m
15x2 5
3x 15 × x × x
b. 15x2 ÷ 3x = = 3x = 5x
c. 12a2b2c2 ÷ 4abc = 12a2b2c2
4abc
3
12 × a × a × b × b × c × c
= 4abc = 3abc
Division of Binomial by Monomial
a. Divide : (9x3y3 + 3x2y) ÷ 3xy Separate the terms
Solution: and Divide separately
(9x3y3 + 3x2y) ÷ 3xy
= 9x3y33 x+y3x2y
9x3y3 3x2y
= 3xy + 3xy
= 9 × x × x × x × y × y × y + 3 × x × x × y
3 × x × y 3 × x × y
= 3x2y2 + x
254 Maths Zone - Grade 5
Exercise 12.4
1. Divide: b. 6x4 ÷ 2x2 c. 8a3 ÷ 2a
a. 2x2 ÷ x
d. 9x3y3 ÷ 3x2y2 e. 16y5z4 ÷ 4y2z f. –18p4q3 ÷ 6p2q
g. 15a4b5 ÷ 3ab3 h. 20p6q3 ÷ 4p2q
2. Divide
a. (6x3y2 + 3xy) ÷ xy b. (15x3y3 + 3x2y) ÷ 3xy
c. (4p8 – 8p2) ÷ 4p2 d. (12x5 + 15x3) ÷ 3x2
e. 2x3y4 + 4x4y3 f. 16x4y2y3 – 6y
2xy
g. (6x4y2 – 8x2y4) ÷ 2x2y2 h. 14x2y2 – 21xy2
7xy
3. Find the missing side of rectangle.
a. b.
A = 6x2y + 5xy xy A = 9a3 – 6a2 3a
c. A=12x4y3 – 32xy d.
4xy A = (18m4n3 + 9m2n2)
3m2n2
Maths Zone - Grade 5 255
Simplification
While simplifying the algebraic expression consider the sign rule like in
arithmetic process.
Example 1
a. Simplify : a. 2x + 3(x – y) b. ab – 2b (a + 3b)
Solution :
a. 2x + 3(x – y) b. ab – 2b (a + 3b)
= 2x + 3x – 3y = ab – 2ab – 6b2
= 5x – 3y = – ab – 6b2
Exercise 12.5
1. Simplify:
a. 2(x + 3)
b. 7 (a + 2b)
c. 3 (2x + 1)
d. 4a + 3 (a + 3)
e. 5x + 3y – 3(x + y)
f. 5x – 3y + 4 (x + y)
g. 6m + 5n – (6m + 4n)
h. 18x – 2(2x – 5)
i. x – 2 (4x – 3) + 10x
256 Maths Zone - Grade 5
Lesson
2 Equation
Addition property of equation x – 5 10
Let's take an example x – 5 = 10 (+ 5) (+ 5)
Now,
x – 5 = 10 If we add same quantity on both sides.
or, x – 5 + 5 = 10 + 5
or, x = 15 It remains again equal.
Subtraction property of equation
Let's take an example x + 7 = 15 x+ 7 15
x + 7 = 15
or, x + 7 – 7 = 15 – 7 (– 7) (– 7)
or, x = 8
If we subtract same quantity on both
haha !!! sides. It remains again equal.
'x' wants to be free from haha !!!
the constant.
We have to remove the
number with 'x'.
Example 1 On right hands size, there is x + 2.
To make x alone we need to remove 2.
x+2=7
To remove 2 from x + 2, we need to
or, x + 2 – 2 = 7 – 2 subtract 2 from both sides
or, x = 5
Maths Zone - Grade 5 257
Example 2
Solve : y – 8 = 10
Solution: Here, Here is y – 8 on left hand side.
y – 8 = 10 To make 7 free, we need
or, y – 8 + 8 = 10 + 8
or, y = 18 to remove 8 from right hand side.
To remove 8 from y – 8,
we need to add 8, on both sides
Exercise 12.6
1. Solve the following.
a. x + 3 = 8 b. x + 5 = 7 c. x + 9 = 10
d. x + 2 = 5 e. x + 6 = 10 f. y – 3 = 5
g. y – 4 = 2 h. y – 7 = 5 i. m – 3 = 9
j. m – 2 = 8 k. 20 + x = 25 l. 15 + m = 22
m. 17 + p = 27 n. 19 + t = 32 o. 31 + c = 57
2. Solve the following.
a. 9 = p – 24 b. q – 15 = 38 c. 17 = 12 + p
d. 40 = 50 – b e. 30 – a = 10 f. 53 – h = 9
g. 80 = x + 70 h. 35 + y = 30 i. 115 + y = 220
3. Make algebraic expressions and solve.
a. When 6 is subtracted from a number, the result is 4. Find the
number.
b. A number is added with 7, then the result is 10. What is the
number?
c. 'x' is added to the 7 and result is 35, what is the value of 'x'.
d. Any number is added to the even prime number then the result
is 12. What is that number.
258 Maths Zone - Grade 5
Multiplication property of equation
Let's take an example x =4
3
x
Now, 3 =4
or, x × 3 = 4 × 3 [Multiplying both sides by 3]
3
x = 12 x 4
3
(× 3) (× 3)
[If some constant divides the
variable, then we need to eliminate
the constant multiplying both
sides by it.]
Division property of equation
Let's take an example 4x = 16
Now, 4x = 16
or, 4x = 16 [Multiplying both sides by 4]
4 4
4x 16
x=4 (÷ 3) (÷ 4)
[If some constant come with
variable as multiplication, then
we eliminate the constant by
dividing both sides by it.
Remember !
• Equal quantity can be added on both sides.
• Equal quantity can be subtracted from bothsides.
• Both sides of equation can be multiplied by equal quantity.
• Both sides of equation can be divided by equal quantity.
Maths Zone - Grade 5 259
Example 1 Short cut method
x + 7 = 12
x+2=7 or, x = 12 – 7 [Here, '+7' is transposed to RHS makes '– 7']
\ x = 5
or, x + 2 – 2 = 7 – 2
\ x = 5
Example 2
5x – 7 = 13
or, 5x – 7 + 7 = 13 + 7 Short cut method
or, 5x = 20 5x – 7 = 13 ['–7' is transposed to RHS makes '+7'
5x 20 or, 5x = 13 + 7
5 5
or, = or, 5x = 20
\ x = 4 or, x= 20 [While transposing the number
5 from one side to another, change
\ x = 4 the sign.]
Example 3
Solve : 4x + 5 = 21 Short cut method
Solution: 4x + 5 = 21
4x + 5 – 5 = 21 – 5 [5 is subtracted both sides] or, 4x = 21 – 5
or, 4x = 16 or, 4x = 16
or, 4x = 16 [Dividing both sides by 4] or, x= 16
4 4 4
\x=4
\ x = 4
260 Maths Zone - Grade 5
Example 4
Solve : 4x = 12 Short cut method
5
Solution: 4x
5 = 12
4x
45x = 12 or, 4x = 5 × 12
or, 5 × 5 = 12 × 5 [Multiplying both sides by 5]
or, 4x = 60
or, 4x = 60 or, x= 60
4
4x 60 \ x = 15
or, 4 = 4
\ x = 15
Cross Multiplication
y 8
83 6
y 8 6
Solve: = ( by cross multiplication method)
y = y×6=3×6
3
=or, y × 6 = 3 × 8 4
3 6or,
y×6 = 3×8 (cross multiplication)
6 62
12 Numerator of LHS × Denominator
\ y = 2 of RHS is equal to Denominator of
or, y = 6 LHS × Numerator of RHS is cross
multiplication.
Maths Zone - Grade 5 261
Exercise 12.7
1. Solve :
a. 2x = 8 b. 5y = 30 c. 7m = 49
f. 3x = 21
d. 8x = 48 e. 36 = 4m
2. Solve :
a. x = 5 b. y = 7 c. 8= y
2 3 2
7
d. t ÷ 8 = 7 e. h ÷ 5 = 6 f. 1= x
3. Solve
a. 3x + 5 = 14 b. 4x – 6 = 26 c. 3x + 4 = 40
f. 5x + 2 = 6x – 1
d. x + 10 = 20 e. 5x – 9 = 21 i. 5x + 1 = 26
g. 4x – 3 = 2x + 1 h. 4x = 25 – x
4. Solve :
a. x = 2 b. y4 = 5 c. b. 6a = 4
3
d. 5x = 10 e. 3x = 6 f. 4x = 8
2 4 5
g. x – 5 = 3 h. x+3 = 2 i. y–3 =3
3 4 4
j. x+2 – 1 =2 k. n–4 + 3 = 5 l. x+4 –2=8
3 2 3
5. Express the following in equation form and solve.
a. If a number is multiplied by 5, it becomes 20. Find the number.
b. When a number is divided by 2 then the result is 12 find the
number.
c. 3 times the number is added to 7 becomes 19. Find the numbers.
d. Four times a number is added to 8 then it becomes 20. What is
the number.
e. 4 is subtracted from the seven times of a number then it becomes
17. Find the number.
262 Maths Zone - Grade 5
Maths Fun
Start from the given point and go through each person and collect all the
terms. What would be the result?
–x + 4x
+ 5x
– 3x
Result ! + 7x
– 2x
Start
Maths Zone - Grade 5 263
Practice Zone
Group A
Circle the correct answer of the following.
1. If x = 3, y = 5, what is the value of 3x - 2y + 7
a. 12 b. 6 c. 16
2. An expression having 3 terms is called
a. Monomial b. binomial c. Trinomial
3. In the term 4x3, 3 is called ...........
a. base b. coefficient c. Exponent
4. The Area of rectangle 2x - y
a. 2x2 - y2 b. 4x2 - y2 c. 4x - 2y
5. What should be added to 3a - 15 to get 5a + 10 ? 2x + y
a. 6a + 5 b. 2a + 5 c. 8a + 15
6. Product of (a + b) and a + b is
a. a2 + b2 b. a2 + 2ab + b2 c. a2b2
7. The Quotient of (9x3y3 + 3x2y) ÷ 3xy is
a. 3x2y2 + x b. 3x2y2 + xy c. 3x2y2 + 3xy
8. Value of x in equation 4x = 12 is
5
a. 15 b. 56 c. 12
264 Maths Zone - Grade 5
Group B
Solve the following questions.
1. Solve the equation:
a. x + 6 = 9
b. 3x = 15
2. Solve5:
a. 4x +2 = 18
b. 5x + 2 = 22
3. The su6m of two consecutive numbers is 79. Find the number.
4. Add : 3x2y2 + 3x2y + 2xy2 and 2x2y - x2y2 - xy2
5. If a = 2, b = 3, c = 4, find the value of 4a + 3ab + 4abc
6. Find the product of (3x + y) (3x - y).
7. Find the quotient of (18a2b3c2 + 12a2b2c3) ÷ 6a2b2c2
8. Solve: x + 3 = 2
4
9. Solve and check the answer.
a. x + 5 = 12 d. 2x + 1 = x + 3
b. b - 7 = 3
c. 2y - 9 = 1 e. 3x = 6
10. Simplify: 4
3y - 1
f. 2 = 7
a. 3x - 2y - 4(x - y) b. a + b - (a - b)
c. 7p - 4 (p + 3)
Maths Zone - Grade 5 265
Answers of Unit 12
Exercise 12.1
1. i. variable ii. constant iii. variable iv. constant
v. constant
2. a. binomial b. trinomial c. monomial d. trinomial
e. monomial f. binomial g. polynomial h. polynomial
3. i. 0 ii. 11 iii. 15 iv. 16
v. -5 vi. -6
4. a. 5 + 3x b. 4 - y c. 5y + 9y or 14y d. (p + q) + 7
e. x - y 2 h. 5y - 2x
f. 25 - 5x
2 g. 3x + y
Exercise 12.2
1. a. Coefficient : 2, Base : x, Exponent : 2 b. Base : y, Exponent : 3, Coefficient : 4
c. Base: a, Exponent : 4, Coefficient : 1 d. Base : m, Exponent : 1, Coefficient : 1
2. a. 15x2, Base : x, Exponent : 2, Coefficient : 15
b. 6y3, Base : y, Exponent : 3, Coefficient : 6
c. 8x5, Base : x, Exponent : 5, Coefficient : 8
d. 14x3, Base : x, Exponent : 3, Coefficient : 14
3. a. 3x b. 8p2 c. 70 d. 7xy
e. 8p2 f. 11a3 g. 7xyz h. 12ab
4. a. 2x b. 2y c. 5x2 d.a3 e. 4ab
f. 4xyz g. 5b3
5. a. 3x + 8 b. 15a + 5b c. 7a + 2 d. 4x + 3y + 1
e. 6x2 + 6x + 2 f. 9x2 - 4y2
6. a. 3x - 5 b. 2xy - 8 c. 3x - 10y + 1 d. x2 + 3y2
e. 5a + 8b + 11 f. 5m - 7n + 10
7. a. 4x + 7y b. 2a + 2b c. 3a2 d. 11a2 - 6a + 8
e. 4y2 - 2x2 + 5 f. 6x - 3y + 3
8. a. 2a + 10 b. 3x2 + 2x + 1 c. 5p + 2 d. 5x2 + 10xy + 2y
9. a. 6x + 3 b. 10 - 2 c. 16x + 2y d. 2x2 + 9x + 2
Exercise 12.3
1. a. 6ax b. 3x2 c. y3 d. a4
g. 6x2y h. 4x3y2
e. 12b5 f. 6p4
c. y2 + 4y d. 3x2 - 15x
i. x2y2 j. 18a4b4 g. 3a2b + 2ab2 h. 12xy - 3x2
2. a. x2 + 3x b. x2 - 3x
e. 5x3 - 15x f. x4 + 4x2
266 Maths Zone - Grade 5
i. 3x3y2 + 2x2y3 j. 14x3
3. a. x2 - 2xy + y2 b. 2x2 + xy - y2
c. a2 - b2 d. 6x2 + 7x - 3
e. 3x2 - 12x + 4xy - 16y f. 6a2 + 17ab + 12b2
g. 9x2 + 3xy - 2y2 h. 6a2 - 13ab + 6b2 i. 8p2 - 2p - 3
4. a. 4x2 + 4xy + y2 b. a2 - 6a + 9
c. a2 + 2ab + b2 d. 2x2 - xy - y2 e. a2 - a - 20 f. 3x2 + 5xy + 2y2
Exercise 12.4
Division of Binomial by Monomial
1. a. 2x b. 3x2 c. 4a2 d. 3xy
g. 5a3b2 h. 5p4q2
e. 4y3z3 f. -3p2q2 c. p6 - 2 d. 4x3 + 5x
g. 3x2 - 4y2 h. 2xy - 3y
2. a. 6x2y + 3 b. 5x2y2 + x c. 3x3y2 - 8 d. 6m2n + 3
e. x2y3 + 2x3y2 f. 8x4y2 - 3
3. a. 6x + 5 b. 3a2 - 2a
Exercise 12.5 b. 7a + 14b c. 6x + 3 d. 7a + 9
f. 9x + y g. 3m + n h. 14n + 10
Simplification
1. a. 2x + 6
e. 5x
i. 3x + 6
Exercise 12.6 b. 2 c. 1 d. 3
f. 8 g. 6 h. 12
Simplification j. 10 k. 5 l. 7
n 13 o. 26
1. a. 5 b. 53 c. 5 d. 10
e. 4 f. 44 g. 10 h. 5 i. 105
i. 12 b. 3 c. 28 d. 10
m. 10
2. a. 33
e. 20
3. a. 10
Exercise 12.7
1. a. 4 b. 6 c. 7 d. 6 e. 9 f. 7
2. a. 10 b. 21 c. 16 d. 56 e. 30 f. 7
3. a. 3 b. 8 c. 9 d. 10 e. 6 f. 2
g. 2 h. 5 i. 5
4. a. 6 b. 20 c. 24 d. 4 e. 8 f. 10
g. 14 h. 5 i. 15 j. 7 k. 8 l 26
5. a. 4 b. 24 c. 4 d. 3 e. 3
Maths Zone - Grade 5 267
268 Maths Zone - Grade 5 Subject : Mathematics Curriculum Development Center, Sanothimi
Specification Grid – 2073
S.N. Areas
Basic/Primary Level, Annual Examination
Class ‐ 5
Level of competences
Knowledge Understanding Application Higher ability
Unit
No of ques.
1 1. Angles 1 Marks112 13 1 4 4 10
GEOMETRY 2. Triangle and Quadrilaterals
No of ques.236 26 1 4 8 18
3. Classification of Triangles Marks324 26 7 13
2 2 4 26 1
2 NUMBERS 1. Place value No of ques. 4 7 16
Marks
2. Prime and composite
numbers No of ques.
Marks
3. Rounding off 2
4. Square and cube of Total Questions
Total Marks
numbers and their roots
Items or questions must be prepared from each unit. Remarks
3 BASIC 5. Factorization 3
OPERATIONS 1. Simplification
4 TIME, MONEY 1. Time
& 2. Money
MEASUREMENTS 3. Distance 2
4. Perimeter
5. Area
6. Capacity & Volume
7. Weight
FRACTION, 1. Fraction
DECIMAL, 2. Decimal
PERCENT, 3. Percentage
5 UNITARY 4. Unitary method 2 2 3 6 2 6 1 4 8 18
5. Simple Interest
METHOD &
INTEREST
6 BILL & BUDGET 1. Bill & budget 1 2 13 25
7 STATISTICS 1. Table and Bargraphs 1 2 13 25
2. Ordered pair
35
Maths Zone - Grade 5 269 8 SET 1. Set 11 2 4
9 ALGEBRA 3 3 2 4 13 6 10
1. Expressions 10
2. Equations
16 47
Total 14 14 17 34 12 36 4 0
Time
3:00 hours
Note: The annual exam should be taken of 100 marks and convert it to 30% or as required for the use of mark ledger and
mark/gradesheets. Here the higher ability means use of analysis, synthesis, evaluation and creativity.
Curriculum Development Centre
Model Question (Draft)
Sanothimi, Bhaktapur Full Marks : 100
Examination Grade 5
Subject : Mathematics
Time : 3 hours (Group A) (14 × 1 = 14)
Encircle 'o' the correct answer.
1. Which instrument do we use to measure an angle ?
a. Ruler b. Protractor
c. Compass d. Set-square
2. What is the nearest hundred for 760 while we round off it ?
a. 600 b. 700
c. 800 d. 900
3. Which is the prime factorization of 20 ?
a. 1 × 20 b. 2 × 10
c. 4 × 5 d. 2 × 2 × 5
4. Which of the following is an improper fraction ?
1
a. 5 b. 4
6
c. 7 d. 25
5 50
5. What is the algebraic expression of difference between a and b ?
a. a ÷ b b. a – b
c. a + b d. ab
6. In 2(1 + 5) which operation is performed in between 2 and (1 + 5) ?
a. addition b. subctraction
c. multiplication d. division
7. What is the mathematical expression of 2 times of 5 ?
a. 2 + 5 b. 2 × 5
c. 5 – 2 d. 5÷2
b. 2x,x2
8. Which of the following are like terms ?
a. x, 3y
c. x, 3x d. 2x, 2y
270 Maths Zone - Grade 5
Fill in the blanks.
9. In simplification.............. is done first out of addition, subtraction,
multiplication and division.
10. There are……………hours in a day.
11. One kilometer is equal to …………..... meters.
12. To change a decimal number into percentage it is multiplied by ………. .
13. When writing a set in listing/roster method, the elements are kept between
………….. brackets. is ………. .
14. In + 5 = 7, the value of
Group B [17 × 2= 34]
15. In the given ∆PQR, the angles ∆QPR = 60° and∆PQR = 70°, P
60°
then find the measure of ∆PRQ.
16. How many hundreds are there in a Crore ? write it.
17. Write down the first and last prime numbers in between the 70° R
Q
numbers 1 to 20.
18. Find the cube root of 27.
19. Simplify : 24 ÷ 6 × 2
20. Simplify : 3 + (15 – 8)
21. If Manju has Rs. 5 and 60 paisa, then how much paisa she has?
22. Find out the area of a rectangle having length 6 cm and breadth 4 cm?
23. Simplify : 6.45 + 4.235 – 8.75
24. Calculate the total cost of 12 oranges at the rate of Rs. 6.50 each.
25. There is 12000 population in a village. If 45% of them are male, find the
population of females.
26. Look at the following budget table and answer the following questions
Ramkrishna’s yearly Budget
Year : 2074
Income Expenses
Topics Amount (Rs.) Topics Amount (Rs.)
Salary 3,30,000 Food 1,50,000
Agriculture 1,25,000 50,000
Education
Rent 60,000
Health 20,000
Miscellaneous 50,000
Total 4,55,000 Total 3,30,000
a) What is the yearly income from Agriculture ?
b) How many topics are there in expenses ?
27. Write the coordinates of vertices of the quadrilateral given in the graph.
Maths Zone - Grade 5 271
9 A 8 9
8 B
7
6 3 4 5 6 7
5
4 C
3
2
1D
0 1 2
28. Express the set of seven days of a week by listing/roster method.
29. Express the set V = {a, e, i, o, u} in words or statement method.
30. Simplify : 3ab - 4ab + 7ab
31. Solve : x + 7 = 12
Group C [12 × 3 = 36 ]
32. Using protector measure the ∠ABC, ∠BAC and D C
∠BCD of the given quadrilateral ABCD. Write their
measures.
33. Factorize the number 150 into prime factors.
34. 30 plants of cauliflower are planted in a row. How A B
many plants are planted in a square field ?
35. If out of 15 pencils, 2 times of the one third are distributed as prize, then how
many pencils are left there now ?
36. How much expenditure does it require to purchase a copy costing Rs. 40 and an
eraser costing Rs. 5 for 4 persons ?
37. Hari's house is 3km 600m far from school. If Pemba's and Hari's houses are in the
same direction from the school. The distance of Pemba's house is one third than that
of Hari's house from the school. Find how far is Pemba's house from the school ?
38= The weight of a box is 2 kg 400 gram. Find out the weight of such 8 boxes?
39. If the cost of 40 copy is Rs. 200, find the cost of such 1 dozen copy.
40. Find the simple interest of Rs.1500 in 3 years at the rate of 10% per year.
272 Maths Zone - Grade 5
41. Look at the price list of a shop and answer the following questions.
S.No. Items Quantity Price
1. Sugar 1 kg Rs. 80
2. Salt 1 kg Rs. 18
3. Oil 1 litre Rs. 150
If 1kg of salt and 2 litre of oil are purchased, then how much is returned from
Rs. 500 ?
42. Following table shows the temperature of Kathmandu valley of a week. Present it
on a bar graph.
Days Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Minimum
Temperature 10 12 15 13 12 15 13
(0C)
43. If x = 2cm and y = 5 cm, find the perimeter of the y - 2 x+y
adjoining triangle.
Group D x+3
[4 × 4 = 16]
44= Observe the given figure and write the names of
i. a right angled triangle, E DC
AB
ii. an acute angled triangle,
iii. an obtuse angled triangle and
iv. the largest quadrilateral.
45. Find the difference between the square root of 64
and cube root of 216.
46. If a cake is 20 cm wide and 7 cm thick and it's volume is 7000 cm³. Find
the difference between its breadth and length.
47. If oranges are planted in 1 and hard nut are planted in 1 land of a garden.
2 4
The remaining part of the garden is empty. Find out the empty part of the garden.
Maths Zone - Grade 5 273
Important Notes
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
274 Maths Zone - Grade 5