The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by nurkejayaan, 2021-09-20 22:42:58

Semester 1 Mathematics STPM (Student's Edition)

Compilation Module Math (T) & (M)

Keywords: functions,sequences,matrices

i

i

UCAPAN ALU-ALUAN TUAN PENGARAH
JABATAN PENDIDIKAN NEGERI PULAU PINANG

Bismillahirrahmanirrahim.
Assalamualaikum Warahmatullahi Wabarakatuh dan Salam Sejahtera.
Saya merakamkan jutaan terima kasih kepada Unit Sains dan Matematik, Sektor Pembelajaran, Jabatan
Pendidikan Negeri Pulau Pinang atas penghasilan Matematik (T) dan Matematik (M) pada tahun 2021
ini. Penerbitan modul ini sangat tepat pada masanya selaras dengan usaha Jabatan Pendidikan Negeri
Pulau Pinang dalam meningkatkan pencapaian akademik para pelajar khususnya dalam peperiksaan
STPM.
Modul ini ditulis hasil gabungan kepakaran Rakan Pembimbing Guru (SISC+), Jurulatih Utama (JU)
dan guru-guru yang berwibawa serta berpengalaman dalam mata pelajaran berkenaan. Semoga dengan
usaha murni ini akan memperoleh kejayaan yang lebih baik pada masa hadapan umpama pepatah
menyatakan, apa yang kita semai hari ini, itulah yang akan kita tuai pada masa hadapan.
Penghasilan modul ini juga diharap dapat menjadi salah satu medium tambahan kepada pembelajaran
pelajar kita. Saya berharap dengan terhasilnya modul ini, akan menjadi titik permulaan untuk
penghasilan modul-modul yang lain bagi membantu para guru dan pelajar menguasai mata pelajaran
Matematik (T) dan Matematik (M) ke tahap yang lebih baik. Sesungguhnya, kejayaan pelajar berkait
rapat dengan komitmen, kerajinan serta kesungguhan para guru dalam melaksanakan tugas mendidik
dengan penuh dedikasi. Saya berharap modul ini akan digunakan seoptimum yang mungkin sebagai
bahan bantu dalam pengajaran dan pembelajaran (PdP) mata pelajaran Matematik (T) dan Matematik
(M).
Akhir kata, saya mengucapkan setinggi-tinggi penghargaan dan terima kasih kepada Unit Sains dan
Matematik, Sektor Pembelajaran Jabatan Pendidikan Negeri Pulau Pinang yang begitu proaktif
menerbitkan modul ini. Begitu juga ucapan terima kasih saya rakamkan kepada semua Rakan
Pembimbing Guru (SISC+), Jurulatih Utama (JU) serta guru-guru mata pelajaran Matematik (T) dan
Matematik (M) yang telah memberikan sumbangan idea, tenaga dan masa bagi merealisasikan modul
yang sangat berharga ini. Semoga Allah SWT sentiasa memberkati usaha murni yang kita lakukan.

“PULAU PINANG PENERAJU TRANSFORMASI PENDIDIKAN NEGARA”
Sekian, terima kasih.

(ABDUL RASHID BIN ABDUL SAMAD)
Pengarah Jabatan Pendidikan Negeri Pulau Pinang

ii

SENARAI PEGAWAI DAN PENGGUBAL MODUL MATEMATIK T DAN MATEMATIK M
SEMESTER 1

BIL NAMA JABATAN /PPD/SEKOLAH
1 ROZITA BINTI KATAN
2 ASMAH BINTI OMAR JABATAN PENDIDIKAN NEGERI
PULAU PINANG

SISC+ PPD SEBERANG PRAI TENGAH

3 ANBU CHELIAN A/L SOUNDARAJAN SISC+ PPD TIMUR LAUT

4 ONG KHYE CHING SISC+ PPD SEBERANG PRAI TENGAH

5 Dr SUZLIPAH SANUSI SISC+ PPD BARAT DAYA

6 TEH MEOW LEE SMK TINGGI BUKIT MERTAJAM
(KETUA KUMPULAN 1)

7 KHOR AI NI SMJK HENG EE, PULAU PINANG.
(KETUA KUMPULAN 2)

8 MEOR MOHD FAIZAL BIN ABU BAKAR KOLEJ TINGKATAN ENAM HAJI

(KETUA KUMPULAN 3) ZAINUL ABIDIN

9 MUMINAH BT ABDUL RAHMAN KOLEJ TINGKATAN ENAM HAJI
(KETUA KUMPULAN 4) ZAINUL ABIDIN

10 TAN SYNN CHEAK SMJK CHUNG LING PULAU PINANG

11 LOOI LI FOONG SMK TUN SYED SHEH BARAKBAH

12 NOR HABSAH BINTI MAT SALLEH SMK SIMPANG EMPAT
13 INTAN SHARIZA BINTI SHAFIE
14 KEK PENG PENG KOLEJ TINGKATAN ENAM DESA
MURNI

SMK ST XAVIER

15 LOW YEE YEAN SMJK CHUNG HWA CONFUCIAN

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

iii

16 OOI GHIM LOOI SMJK PEREMPUAN CHINA PULAU
17 TING PING PING PINANG

SMK (L) METHODIST

18 ONG SWAD MEY SMJK JIT SIN

19 NURUL AINI BINTI ARNIS SUTAN SATI SMK PENANTI

20 NORHAYATI BINTI SALLEH SMK TELOK AIR TAWAR
21 ROSMAWATI BINTI KADIR
22 PARAMESWARY TIYAGARAJAN SMK TUNKU ABDUL RAHMAN,
NIBONG TEBAL

SMJK CHUNG LING BUTTERWORTH

23 ABDUL SALAM BIN ABDUL RAHIM PENANG FREE SCHOOL
24 SIM KAH SENG
25 TAN GAIK CHOO SMJK PEREMPUAN CHINA PULAU
PINANG

SMK TINGGI BUKIT MERTAJAM

26 SAKTHIYAVAANI A/P BALAKRISHNAN SMK SEBERANG JAYA

27 SIM KAH SENG SMJK PEREMPUAN CHINA PULAU
PINANG

28 TAN SYNN CHEAK SMJK CHUNG LING PULAU PINANG

Terbitan
Unit Sains dan Matematik
Sektor Pembelajaran
Jabatan Pendidikan Negeri Pulau Pinang
Jalan Bukit Gambir
11700 Pulau Pinang

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

iv

CONTENT

TOPIC 1 : FUNCTIONS

1.1 FUNCTIONS page 1

1.2 POLYNOMIAL AND RATIONAL FUNCTIONS page 36

1.3 EXPONENTIAL AND LOGARITHMIC FUNCTIONS page 62

1.4 TRIGONOMETRIC FUNCTIONS page 79

TOPIC 2 : SEQUENCES AND SERIES

2.1 SEQUENCES page 103

2.2 SERIES page 112

2.3 BINOMIAL EXPANSIONS page 150

TOPIC 3 : MATRICES

3.1 MATRICES page 160

3.2 SYSTEMS OF LINEAR EQUATIONS page 192

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

1

1.1(a) Learning Outcome:
FUNCTIONS a) State the domain and range of a function, and find composite functions.

➢ DEFINITION
A function is a special type of relation where each and every element in the domain has
only one image in the range.

➢ NOTES
The types of relations that are connected as a function are:

a) One-to-one relation b) Many-to-one relation

a. .d a.
b. .e b. .d
c. .f
c. .e

Domain Range Domain Range

A function f from a set X to a set Y is defined as a rule that associates exactly one element of Y
with each element of X. We say, f maps X into Y and we write ∶ →

If ∈ and ∈ such that y is assigned to x under f, we say f maps x to y and write
f ∶ → y or y = f(x), where y is the image of x.

In general, a function f is defined for certain values of x only. This set of values of x for which
f is defined is called the domain of f. The set of values of f (x) for a given domain is called the
range of f.

For more information,
scan this QR code.

Composite Functions
If f is a function which maps set X to set Y and g is a function which maps set Y to set Z,
Then ∘ is a composite function which maps set X directly to set Z, as illustrated in figure.



xf y g z For more
=f(x) =g(y) information,
=gf(x) scan this
QR code.

XY Z

For ∘ to be defined, the range of f must be a subset of the domain of g, ⊆ .

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

2

EXAMPLE 1
The domain of a function h, where ℎ: → 2 , ∈ ℝ
(a) Find the images of −1 and 6.
(b) Find the element in the domain with images 16.
(c) Find the range of the function h.

Solution:
(a) For x = −1

ℎ(−1) = 2−1
=1

2

For x = 6,
ℎ(6) = 26
= 64

(b) ℎ( ) = 16
2 = 16
2 = 24
= 4

(c) The range is ℝ+.

EXAMPLE 2
State the set of value of x for which each of the following function is defined.
(a) : → √ − 1
(b) ℎ: → 1

−1

(c) : → lg( − 2)

Solution:
(a) For f defined, − 1 ≥ 0

≥ 1
Hence, the domain of the function f is { : ≥ 1}

(b) For g defined, − 2 > 0
> 2

Hence, the domain of the function g is { : > 2}

(c) For g defined, − 1 ≠ 0
≠ 1

Hence, the domain of the function g is { : ≠ 1}

EXAMPLE 3
Given the function ( ) = √ and ( ) = 2 + 9
(a) Determine the domain and the range of f and g.
(b) Explain why ∘ exist.
(c) Find ∘ and state its domain and range.

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

3

Solution:
(a) For f defined, ≥ 0

Then, the domain of f is { : ≥ 0}
The domain of g is { : ∈ ℝ}.

(b) The range of g is { : ≥ 9}
The domain of f is { : ≥ 0}
Since ⊆ , ∘ exist.

(c) ∘ (x) = [ ( )]
= ( 2 + 9)
= √ 2 + 9

The domain of ∘ is the same as the domain of g, that is { : ∈ ℝ}.
The range of ∘ is { : ≥ 3}.

EXAMPLE 4
If ( ) = cos and ( ) = 1 + , ∈ ℝ, find
(a) ∘ ( )
(b) ∘ ( )
(c) ∘ ( )

Solution:
(a) ∘ ( ) = [g( )]

= (1 + )
= cos (1 + )

(b) ∘ ( ) = [ ( )]
= ( cos )
= cos (cos )

(c) ∘ ( ) = [ ( )]
= (cos )
= 1 + cos

EXAMPLE 5
If ( ) = 2 − 3 and ∘ ( ) = 2 + 1 , find g(x)

Solution:
If ∘ ( ) = 2 + 1

[ ( )] = 2 + 1
2 ( ) − 3 = 2 + 1

2 ( ) = 2 + 4
( ) = + 2

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

4

EXAMPLE 6

Given that the function : → 2 + 1, find the function g if the composite function
∘ ∶ → 1 , ≠ 1.

−1

Solution:

If ∘ ( ) =1

−1
[ ( )] = 1
−1
(2 + 1) = 1
−1

Let = 2 + 1

Then = 1 ( − 1)
2
1
Hence, ( ) = 12( −1)−1

=2
−3
( ) = 2 ,
Then, ≠3
−3

WORKSHEET 1.1

Q1 Given that : → 2 + + 1 and ∈ X, where = {−2, −1, 0, 1, 2}.
(a) Sketch the diagram to represent g.
(b) State the domain of g.
(c) State the range Y of g.
(d) Is g a one-to-one function?

Solution:
1(a)

(b)
(c)
(d)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

X

5

Q2 Function f is defined by : → 3 − 5 , ∈ ℝ. Find
(a) f (2)
(b) the value of x whose image is 13
(c) ( 2)
(d) f (2 − 1)
(e) the value of x if ( 2) = (2 − 1)

Solution:
2(a)

(b)

(c)
(d)

(e)

Q3 Determine the domain of f such that f is a function:

(a) ∶ → ln ( + 2) +1

1 √1−
2+2 −8
(b) ∶ → + √

Solution:
3(a)

(b)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

6
Q4 Given that : → + , ∈ ℝ, g (1) = −3 and g (−1) = 1, find

(a) the values of a and b,
(b) the values of n if ( 2 + 1) = 5 − 6
Solution:
4(a)

(b)

Q5 The functions f and g are defined by ( ) = 2 − 4 and ( ) = √ − 2 respectively.
(a) Determine the domain and the range of
(i) f
(ii) g
(b) Explain why ∘ exist.
(c) Find ∘ and determine its domain.

Solution:
5(a)

(b)
(c)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

7
Q6 If ( ) = √ , ≥ 0 and ( ) = 1 − 2, ∈ ℝ, find

(a) ∘ ( )
(b) ∘ ( )
(c) ∘ ( )
Solution:
6(a)

(b)

(c)

EXERCISE 1.1

Q1 Given that ( ) = √ + 1, ≥ −1 ,
(a) Find the value of
(i) f (8)
(ii) f (0)

(b) Find the value of x such that
(i) ( ) = 5
(ii) ( ) = 10

Q2 Determine the domain of f such that f is a function:

(a) : → √16 − 2 − ln ( 2 − − 2)

(b) : → 4 − ln (1 − )
√ +4

Q3 The functions f and g are defined by : → and : → +4 respectively.

+2

(a) State the domain of f and g.

(b) Find the composite function ∘ and state its domain.

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

8

Q4 The functions g and h are defined by ( ) = 25 , 1 < < 9, ∈ ℝ and
3 −2
( ) = 2, 1 < < 3, ∈ ℝ .

(a)Determine the range of

(i) f

(ii) G

(b)Explain why ∘ exists. Hence, find ∘ g, stating its domain.

Q5 The functions f and g are defined by : → 2 − 1, ∈ ℝ and : x → 2 + 3, ∈ ℝ respectively.

Find
(a) ( ∘ )(3)
(b) ( ∘ ) (1)

2

ANSWER 1(a) (i) 3
Section (ii) 1
1.1
(b) (i) 24
Exercise (ii) 99
1.1
2(a) Domain of f is { : − 4 < < −1 or 2 < ≤ 4}
(b) Domain of f is { : − 4 < < 0}
3(a) Domain of f is { : ∈ ℝ, ≠ −2}

Domain of g is { : ∈ ℝ, ≠ 0}
(b) The domain of ∘ f is { : ∈ ℝ, ≠ −2, ≠ 0}
4(a) (i) Range of f is { : 1 ≤ ≤ 25}

(iii) Range of g is { : 1 ≤ ≤ 9}
(b) Because ⊆ .

Domain of ∘ g is { : 1 ≤ ≤ 3}
5(a) 19

(b) 15

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

9

1.1(b) Learning Outcome:
ONE-TO-ONE b) Determine whether a function is one-to-one, and find the inverse of a
FUNCTIONS one-to-one function

➢ DEFINITION
One-to-one function is a function that maps distinct elements of its domain to distinct elements
of its codomain.

➢ NOTES
1. Every element of the function’s codomain is the image of at most one element of its domain.
A function f : D → S is a one-to-one function if and only if a,bD, f (a) = f (b) implies

that a = b .

2. An inverse function (or anti-function) is a function that “reverses” another function. If the
function f applied to an input x gives a result of y , then applying its inverse function g to
y gives the result x , that is g( y) = x if and only if f (x) = y . The inverse function of f is
also denoted as f −1 .

➢ CONCEPT
1. To determine whether or not a function is a one-to-one function, we can use the horizontal
line test.
2. If there is only one intersection point, the function is a one-to-one function.
3. If f is a one-to-one function:
• the domain of f −1 is the range of f
• the range of f −1 is the domain of f
4. The graph of f and f −1 are symmetrical about the straight line y=x
5. Inverse functions ONLY exist for one-to-one functions.
6. A function which is NOT one-to-one can have an inverse function if we RESTRICT the
domain of the function so that it is one-to-one.

****USE COMPLETING THE SQUARE****

REMEMBER THIS !

: → 2, ∈ ℝ (not one-to-one)
: → 2, ∈ ℝ, ≥ 0 (one-to-one)

EXTRA KNOWLEDGE!

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

10
EXAMPLE 1
Determine whether each of the following functions is one-to-one.

(a) f (x) = x3
(b) g(x) = x
Solution:
(a) Method 1 (using definition)

Let, x1 = x2
Then, x13 = x23

f (x1) = f (x2 )
 f (x) = x3 , is one-to-one function

Method 2 (graphical method)

Since no horizontal lines intersect the graph of f (x) = x3 more than once, by the

Horizontal Line Test, the function f is one-to-one.
(b) Method 1 (using definition)

Let 1 = 2
Then, √ 1 = √ 2

g(x1) = g(x2)

∴   ( ) = √ is one-to-one function

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

11
Method 2 (graphical method)

Since no horizontal lines intersect the graph of g(x) = x more than once, by the

Horizontal Line Test the function g is one-to-one.

EXAMPLE 2

A function is defined by : f : x → 3 − x ,
(a) find f −1

(b) determine the domain and the range of
(i) f
(ii) f −1

(c) sketch the graph of y = f (x) and y = f −1(x) on the same axes.

Solution: = −1( )
(a) Let ( ) =

√3 − =

3− y = x2

y = 3− x2
∴   −1: → 3 − 2

(b) (i) domain = x x  3
range = y y  0

(ii) domain = x x  0
range = y y  3

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

12
(c)

EXAMPLE 3

The function g is defined by: g:x→ 2
x2 +1 .

(a) Sketch the graph of y = g(x)

(b) State the domain of g so that g −1 exists. Determine the corresponding range of g .

(c) Find g −1 , hence determine the domain and range of g −1 .

(d) Sketch the graph of y = g(x) and y = g −1(x) based on the domains and ranges determined in

(b) and (c).

Solution:
(a)

(b) In order for g −1 to exist, g must be one-to-one. Hence, the domain of g must be restricted to only

x x  0 and range of g is y 0  y  2 .

(c) Let y = g −1(x)

( ) =

2 =
2+1

2 = xy2 + x

2 = 2−



UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

13
= √2−



∴   −1( ) = √2−



(d)

WORKSHEET 1.2
Q1 Determine whether each of the following functions is one-to-one.

(a) f (x) = 2x − 5
(b) h (x) = 5 − x2
(c) p (x) = 1

x
Solution:

(a) Method 1 (using definition)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

14
Method 2 (graphical method)

.
(b) Method 1 (using definition)

Method 2 (graphical method)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

15
(c) Method 1 (using definition)

Method 2 (graphical method)

Q2 Given the function f, f : x → x2 . Show that the function is not one-to-one.
Solution:

Q3 Given that :

f (x) = 3x +1 , x0
2x −1 , x 0

Show that the above function is one to one .

Solution:
Suppose a, b ϵ ℝ (domain), there are 4 cases to consider:
Case 1: a. b ≥ 0

Case 2: a ≥ 0, b < 0

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

16
Case 3: a < 0, b ≥ 0

Case 4: a < 0, b < 0

Q4 Determine if f (x) = sin x − sin x , 0  x  2 , is one to one and give reason to your answer.

Solution:

Q5 Given that the following functions are not one- to- one. Determine the maximum domain of

each function so that it can have an inverse.
(a) ( ) = 3 + 4 2, ∈ ℝ

(b) ( ) = 2 − 4 + 1, ∈ ℝ

(c) ( ) = 3 + 2 − 2, ∈ ℝ

(d) ( ) = 2( + 1) 2, ∈ ℝ

(e) ( ) = 1 , ∈ ℝ
2+1

Solution:
(a)

(b)

(c)

(d)

(e)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

17

EXERCISE 1.2

Q1 Given the function f (x) = 4 − x .

(a) Find the domain and range of the function.
(b) Determine whether f −1 exists. If it exists, find its expression, domain and range.

Q2 Given the function f (x) = x +1 , x  2 is one to one. Find f −1(x) .
x−2

Q3 A function f is defined by f : x → 2 + 2x −1, x 1.

(a) Find f −1(x) .
(b) Determine its domain and range.

Q4 The function f is defined by f (x) = ex − e−x , x . Find the inverse of f.
ex + e−x

Q5 The function f is defined by f (x) = x2 − 2x + 2, 0  x  1. Sketch the graphs of
y = f (x) and y = f −1(x) on the same axes.

ANSWER 1(a) Df = (−, 4]
Section Rf = [0, )
1.1
1(b) −1( ) = 4 − 2
Exercise Domain of f −1= Range of f = [0, )
1.2 Range of f −1= Domain of f = (−, 4]

2 −1( ) = 2 − 1 , ≠ 1
− 1

3 −1( ) = 2 − 4 + 5
The domain of f −1is the same as the range of f that is

{ | ≥ 2, ∈ ℝ}.
The range of f −1is the same as the domain of f that is

{ | ≥ 1, ∈ ℝ}.

4 −1( ) = 1 1 + , ∈ ℝ, −1
2 (1 − )

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

18
5

1.1(c) Learning Outcome:
GRAPH OF a) Sketch the graphs of simple functions, including piecewise-defined
FUNCTION
functions.

GRAPH OF FUNCTION

➢ DEFINITION
The graph of a function f is the set of all points in the plane of the form (x, f(x)). We could also
define the graph of f to be the graph of the equation y = f(x).

➢ CONCEPT
A. Basic shape of the graph

Type of function > 0 < 0

Linear function
( ) = + , ≠ 0

Domain = ℝ Domain = ℝ
Range = ℝ Range = ℝ

Quadratic function
( ) = 2 + + , ≠ 0

Domain = ℝ Domain = ℝ
Range = [ , ∞) Range = (−∞ , ]

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

19

Cubic function Domain = ℝ
Range = ℝ
( ) = 3 + 2 + + ,

≠ 0
Domain = ℝ
Range = ℝ

Reciprocal function

( ) = 1 , ≠ 0


Domain = (−∞, ) ∪ ( , ∞) Domain = (−∞, ) ∪ ( , ∞)



Range = (−∞, 0) ∪ (0, ∞) Range = (−∞, 0) ∪ (0, ∞)


( ) = 2 , ≠ 0

Domain = (−∞, 0) ∪ (0, ∞) Domain = (−∞, 0) ∪ (0, ∞)
Range = (0, ∞) Range = (−∞, 0)

Square root function Domain = [ , ∞) Domain = [ , ∞)
( ) = ±√ − Range = [0, ∞) Range = (−∞, 0]

( ) = ±√ −

Domain = (−∞, ] Domain = (−∞, ]
Range = [0, ∞) Range = (−∞, 0]

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

20

B. Graphs of modulus functions
A modulus function is a function which gives the absolute value of a number or variable. The outcome
of this function is always positive, no matter what input has been given to the function.
The graphs of = + and = | + | are as below:

For x < − , the graph = | + | is the reflection of the graph = + about x-axis.


C. Graphs of piecewise functions Quick Notes 1.1(c)

A piecewise-defined function is a function defined https://youtu.be/-
by multiple sub-functions, where each sub-function P5VUP_NQVM
applies to a different interval in the domain.

➢ NOTES
Step:
To sketch the graph of the function, we need to perform the following:
1. Determine type of function and corresponding shape.

2. Find y-intercept (point where (0)). LLET
3. Find x-intercepts (points where ( ) = 0). DANCE
4. Find what asymptotes does function have, if any. TOGETHE

R!

5. Find stationary points (minimum, maximum and inflection point).

6. Use test to classify stationary points.

7. Add "control" points (some arbitrary points), if needed.

8. Draw "important" and "control" points and connect them by lines
taking into account found behaviour of the function.

9. If function is even, odd or periodic then perform corresponding
reflection.

10. If function is obtained by transforming simpler function, perform
corresponding shift, compressing /stretching.

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

21

EXAMPLE 1

Sketch on separate diagram, the graphs of

(a) = 1
−2
(b) = | 1 |
−2
1
(c) 2 = −2

Solution:

(a) = 1
−2

a > 0 shape
The asymptotes are x = 2, y = 0

(b) = |1| = 2
= 2
−2

The asymptotes are x = 2, y = 0

Reflection y negative become y positive

(c) 2 = 1
−2

The asymptotes are x = 2, y = 0

Reflection x < 2 become x > 2

= 2

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

22

EXAMPLE 2
Sketch the graph of = 2 + − 2 , noting the points of intersection of the graph with x-axis
and y-axis.
On a separate diagram, sketch the graph of = |2 + − 2|

Solution:
= 2 + − 2

• a = −1 < 0 shape
• When y = 0, 2 + − 2 = 0

(1 + )(2 − ) = 0
= −1 or 2

• When x = 0, y = 2
Graph of = 2 + − 2 shown in diagram (a)

Diagram (a)

The graph of = |2 + − 2|
can be drawn by reflecting the section
of graph that is below the x-axis
as shown in diagram (b).

Diagram (b)

EXAMPLE 3 Quick Notes

Sketch the graphs of Note:

( ) = {−2 2++32, < 1 ● indicates this point
, ≥ 1 is included

Solution: o indicates this point
is excluded
• For the region x < 1,
✓ we have a straight line with slope 2 and y-intercept 3.
✓ As x approaches 1, the value of the function approaches 5
(but does not reach it because of the “ < ” sign)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

23

• For the region ≥ 1
✓ When x =1, the function has value (1) = −(1)2 + 2 = 1
✓ As we go further to the right, the function takes value based on ( ) = − 2 + 2
✓ It is a parabola.

WORKSHEET 1.3 . ( ) = √ − 2
Solution:
Sketch the graph of the following:
. ( ) = 3 2 − 2 − 1

Solution:

3(a) ( ) = | + 1| 3(b) With the aid of graph of ( ) in 3(a),
Solution: sketch the graph of 2 ( ).

Solution:

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

24 3(d) With the aid of graph of ( ) in 3(a),
sketch the graph of ( ) − 2.
3(c) With the aid of graph of ( ) in 3(a),
sketch the graph of ( + 2). Solution:

Solution:

4(a) = 4(b) 2 =
−2 −2

Solution: Solution:

2 , < 0
5. ( ) = { , 0 ≤ < 2

−2 , ≥ 2

Solution:

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

25

EXERCISE 1.3

1. Sketch the graph of (b) = −3 + 4
(a) = 2 − 3

2. Sketch the graph of

(a) = 2 − 4 (c) 2 = 2 − 4

(b) = 1
2−4

3. Given ( ) = − 1 3 + 3 + 1. Sketch the following graphs separately
22

(a) = ( ) (c) = −3 ( )

(b) = ( + 1) (d) = (2 )

4. Sketch in separate diagrams, the graphs of

(a) = +1 (c) 2 = +1

−2 −2
(b) = | +1|

−2

5. Sketch the graph of (c) = −| + 2| + 3
(a) = | |
(b) = 2| − 1| − 4

6. The function f is defined by ( ) = {−32 +−28, , < −2
Sketch the graph of f. > −2

7. The function f is defined by ( ) = {5 −− 1 2,, ≤ 2
Sketch the graph of f . > 2

8. The function f is defined on the domain [-3 , 3] as follows:

( ) = {−11 , −3 ≤ < 0
, 0 ≤ <3

Sketch the graph of f.

9. The function f is defined by
sin , < −2


( ) = { 2 − 2 , −2 ≤ < 2
2 − 8 + 10 , ≥ 2

Sketch the graph of f.

ANSWER

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

26

Section 1(a)
1.1

Exercise
1.3

(b)

2(a)

2(b)

= 4

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

27 = 4
2(c)
3(a)

3(b)

3(c)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

28
3(d)

4(a)
= 1

= 2
4(b)

= 1
= 2
4(c)

= 1
= −1
= 2

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

29
5(a)
5(b)
5(c)

6

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

30
7

8

9

CLONE STPM
Q1 The function f and g are defined by ( ) = 2 ln , > 0 and ( ) = √ − 1, >1

(a) Sketch the graphs of f and g.
(b) Find −1 and −1, stating the domains and ranges of −1 and −1.
(c) Determine whether ∘ exist.
Q2 Functions f and g are defined by f(x) = e x+2 and (g ∘ f )(x) = x , for all x ≥ 0.
(a) Find the function g, and state its domain.
(b) Determine the value of (f ∘ g)(e3).

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

31

Q3 (a) The function is defined as: ℎ( ) = | + 3| − | − 3|, ∈ .
(i) Sketch the graph of h.
(ii) State the range of h.

(b) The functions f and g are defined as:

( ) = + | | , ∈
2
− 1, < 0,
( ) = { 2, > 0.

Sketch the graphs of the function f and g.

From the graphs, determine the continuity of the composite function f ∘ g and hence discuss

whether the composite function f ∘ g is defined.

Q4 The function is defined by ( ) → 2 − 3 , ∈ ℝ.
(a) Sketch the graph of g(x) . Hence, show that g(x) is not a one-to-one function.

(b) Determine the set of values of domain g, Dg , for which g(x) is a one-to-one function.

1
The function is defined by : → √3 + 1, ∈ ℝ, ≥ − 3 .

Find f −1 and state its domain and range.

Q6 The function is defined as follows:
: → 4 + ( − 1)2, ∈ ℝ

(a) Sketch the graph of f .

(b) State the range of f .

(c) Determine if f −1 exist.

Q7 The functions f is defined by

( ) = 4 − 2 , − 3 ≤ < −1
|2 − 1|, > −1

(a) Find lim ( ).

→ −1

(b) Determine whether ( ) is continous at = −1. Give your reason.

(c) Sketch the graph of ( ).

Q8 A functions f is defined by : → √ + 1, ∈ [−1, ∞)
(a) Define −1 in the similar form and state its domain and range.
(b) Sketch the graph of f and −1 on the same axes.

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

32 1(a) (i) (ii) y=g(x)
y y y = g (x)
ANSWER
Section y==f(fx)(x)
1.1

Clone
STPM

O1 x O1 x

(b) (i)

−1( ) = 2
−1 = { : ∈ ℜ}
−1 = { : ∈ ℜ, > 1}

(ii)
−1( ) = 2 + 1
−1 = { : ∈ ℜ, > 0}
−1 = { : ∈ ℜ, > 1}

(c) = { : ∈ ℛ} ; = { : > 1}

(d) Since ⊈ , g ∘ f does not exist.

2(a) g :x → ln x − 2 , x  e2

(b) fg(e3) = e3

3(a) (i) Sketch graph of function h is

(ii) Range of h is { |−6 ≤ ≤ 6}

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

33
(b) Sketch of the graph of function f:

Sketch of the graph of function g:

The range of g is the subset of f , then the composite function f ∘ g is
defined.

4 (a) the function g is not one to one
(b)
5 3 3
 Domain : 2 
6(a) Dg : −  Dg  2  or Dg :  Dg 


∴ −1( ) = 2−1

3

Domain f −1(x) = [0, ) and range of f −1(x) = [− 1 , )

3

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

34

(b) f(1) = 4 is the minimum
range of f is [4, ) .

(c) Inverse of f does not exist since f is not a one-to-one function as can be
seen from the graph.

7(a) lim ( ) = lim (4 − 2)
→−1− →1−

=3

lim ( ) = lim |2 − 1|
→−1+ →1−

=3

∴ lim ( ) = 3

→−1−

(b) lim ( ) exist but (−1) is not defined, thus ( ) is not continuous at

→−1−

x = −1

(c)

8(a) (i) ∴ −1( ) = 2 − 1
Domain of −1 is [0, ∞) or { : ≥ 0}
range is [−1, ∞)or { : ≥ 1}

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

35
8(b)

1 y=x
f
-1
-1 −1

1

1.2(a) Learning Outcome:
POLYNOMIAL a) use the factor theorem and the remainder theorem
AND b) solve polynomial and rational equations.
RATIONAL
FUNCTIONS

POLYNOMIAL FUNCTION

1. A function of x in the form
( ) ≡ + 1 −1 + ⋯ + − + ⋯ + −1 +

where ∈ ℝ and ≠ 0, ∈ ℤ+ is called a polynomial function of degree n.

2. Polynomials of degrees 1, 2, 3 and 4 are also known as linear, quadratic, cubic and quartic
functions respectively.

3. The value of a polynomial, ( ), when = is written as ( ).

For example,
If ( ) = 3 2 + 4 − 1
Then when = 1, (1) = 3(1)2 + 4(1) − 1 = 6
And when = 2, (2) = 3(2)2 + 4(2) − 1 = 19

4. A number ∈ ℝ is the zeros of ( )

Example: If ( ) = ( − 2)( + 1)(2 − 1), then zeros of ( ) are 2, −1, 1 .
2

5. When polynomial ( ) is divided by ( − ), then ( ) = ( − ) ( ) + , where
( ) = , =

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

36

EXAMPLE 1
Determine the quotient and remainder when 4 − 2 3 + 6 − 5 is divided by ( 2 − − 1).

Solution:
Using long division method,

2 −
2 − − 1 4 − 2 3 + 6 − 5

(−) 4 − 3 − 2
− 3 + 2 + 6

(−) − 3 + 2 +
5 − 5

Hence 4 − 2 3 + 6 − 5 = ( 2 − − 1)( 2 − ) + 7 + 5

( ) = 2 − and = 5 + 5

THE REMAINDER THEOREM
When the polynomial ( ) with degree n is divided by (x – a), the quotient, ( ), is a polynomial of
degree (n – 1), and the remainder R is a constant,

( ) = ( ) +
− −

By substituting = , we see that ( ) =

( ) ≡ ( )( − ) +

When a polynomial ( ) is divided by ( − ), the remainder is ( )

EXAMPLE 2
Find the remainder when a polynomial ( ) = 3 5 − 2 3 + 7 is divided by (x − 2).

Solution:
(2) = 3(2)5 − 2(2)3 + 7

= 87

EXAMPLE 3
Find the value of a and b when a polynomial ( ) = 3 − 6 2 + is divided by
( − 1)( + 2) , its remainder is 8x – 16.

Solution:
3 − 6 2 + ≡ ( − 1)( + 2) ( ) + (8 − 16)

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

37

When = 1, − 6 + = 8 − 16
+ = −2 -----(1)

When = −2, − 8 − 24 − 2 = 8(−2) − 16
8 + 2 = 8
4 + = 4 -----(2)

(2) − (1), 3 = 6
= 2
∴ = −4

THE FACTOR THEOREM
From the remainder theorem, we have shown that when a polynomial ( ) is divided by (x – a),
its remainder, R is P(a). On the other hand, if (x – a) is a factor of ( ), then its remainder is zero,
R = P(a) = 0.

For a polynomial P(x), (x – a) is a factor of ( ) if and only if ( ) = 0

For a polynomial ( ), ( − ) is a factor of ( ) if and only if ( ) = 0



EXAMPLE 4
Given that ( − 1) and (3 + 1) are factors of polynomial ( ) = 3 3 − 2 + + 2 , find the

value of a and b.

Solution:
Given that ( − 1) is a factor of ( ),

By the factor theorem,
(1) = 0

3 − + + 2 = 0
− + = −5 ------- (1)

(− 1) = 0

3

13 12 1
3 (− 3) − (− 3) + (− 3) + 2 = 0

− 1 − − + 2 = 0

993

− − 3 = −17 ------- (2)

(1) − (2), 4 = 12
∴ = 3
∴ = 8

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

38

EXAMPLE 5
Given that ( − 3) is a factor of ( ) = 3 + 2 − − . When the polynomial is divided

by ( − 1), the remainder is 24. Find the value of p and q.

Solution:
Given that ( − 3) is a factor of ( ),

By the factor theorem,
(3) = 0

27 + 9 − 3 − = 0
9 − = −24 ------- (1)

Given that when ( ) is divided by ( − 1) the remainder is 24.
By the remainder theorem,

(1) = 24
1 + − 1 − = 24

− = 24 ------ (2)

(1) − (2), 8 = −48
∴ = −6
∴ = −30

WORKSHEET 1.4

Answer the following question. Q2 Find the value of a if the remainder 18
Q1 When the polynomial ( ) is divided by when a polynomial
( ) = 2 3 + 2 − 5 + 6 is divided by
( + 1), its remainder is 3, and the ( − 4).
remainder is 1 when it is divided by ( − 1).
Find the remainder of the polynomial when Solution:
It is divided by 2 − 1.

Solution:

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

39

Q3 Given the function Q4 Given that (x + 2) is a factor of the polynomial
f(x) = (2x− l)(x − 2)(x + 3). ( ) = 2 3 − 2 + − 6. Determine the
value of a. Factorise ( ) completely.
Find the value of constant h such that (x + 2)
is a factor of f(x) + hx. Solution:

Solution:

EXERCISE 1.4

Q1 The polynomial 4 − 5 3 + 2 + 7 + 1 leaves a remainder of −8 when it is divided by

( − 1), and a remainder of 11 when divided by (2 + 1). Determine the values of a and b.
2

Q2 Given ( ) = 6 4 + 5 3 + 2 + 4, where is a constant, find the value of given (2 + 1)
is a factor of ( ). Assuming this value of , factorise ( ) completely and solve the equation
( ) = 0.

Q3 The polynomial 2 3 − 3 2 + + has the factor ( − 1) and when divided by + 2,

it results in remainder −54. Find a and b. Then factorise this polynomial.
Hence, find all the factors of 4 3 + 3 2 − 9 + 2.

Q4 Find all the real values of a and b that satisfy the equation
4 − 10 2 + 1 = ( 2 + + 1)( 2 + + 1)

Hence, determine all the real roots of the equation
4 − 10 2 + 1 = 0

Q5 If ( ) = 4 + 2 3 + 5 2 − 16 − 20, show that ( ) can be expressed in the form
( 2 + + )2 − 4( + )2, where a and b are constants to be determined. Hence, find both the

real roots of the equation ( ) = 0.

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

40 1 ∴ = 43
∴ = −54
ANSWER
Section 2 = −15
1.2 ( ) = (2 + 1)( − 1)(3 − 2)( + 2)
12
Exercise = − 2 , 1, 3 , −2
1.4
3 = 3
= 4
∴ ( ) = ( − 1)(2 + 1)( − 4)
4 3 + 3 2 − 9 + 2 = ( − 1)(4 − 1)( + 2)

4 When = 2√3, = −2√3
When = −2√3, = 2√3
Hence, the solutions are √3 ± √2, −√3 ± √2

5 the real roots are = −1 or = 2 .

1.2(b) Learning Outcome:
INEQUALITIES a) Solve polynomial and rational inequalities
b) Solve inequalities involving modulus signs in simple cases

➢ DEFINITION
An inequality is similar to an equation except that the statement is that two expressions have
a relationship other than equality, such as < , < , > , or > .

➢ NOTES
To solve an inequality means to find all values of the variable that make the inequality true.

Linear Inequalities
A linear inequality is one in which each term is constant or a multiple of the variable.

Nonlinear Inequalities
The sign of a product or quotient
If a product or quotient has an even number of negative factors, then its value is positive.
If a product or quotient has an odd number of negative factors, then its value is negative.

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

41

➢ CONCEPT

1. A < B  A + C < B + C

2. A < B  A – C < B – C

3. If C > 0, then A < B  CA < CB

4. If C < 0, then A > B  CA > CB

5. If A > 0 and B > 0, then A < B  1  1
A B

6. If A < B and C < D, then A + C < B + D

To Solve a Nonlinear Inequality:
1. Write the inequality so that all nonzero terms are on side of the inequality sign.

If there are fractions, write the expression with a single fraction.
2. Factor the nonzero side of the inequality.
3. Determine the values for which each factor is zero and divide the number line into

the intervals.
4. Use test values to make a diagram using the number line, showing the sign of each

factor on each interval.
5. Determine the solution from the table of signs. Check the endpoints of the intervals

with the inequality.

Absolute Value Inequalities
Properties of Absolute Value Inequalities
1. x  c  ̶ c < x < c ; x  c  ̶ c < x < c
2. x  c  x < ̶ c or x > c ; x  c  x < ̶ c or x > c
3. x − a  c  ̶ c < x – a < c → a – c < x < a + c
4. x − a  c  x – a < ̶ c or x – a > c → x < a – c or x > a + c

Linear inequalities involving modulus can be solved by
(a) applying the properties of modulus
(b) squaring both sides of the inequality
(c) using the graphical method

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

42

EXAMPLE 1
Find the set of values for x for which
(a) 3x + 2  6

(b) 4 − 3x  5

Solution:
(a) 3x + 2  6

− 6 < 3x + 2 < 6

− 8 < 3x < 4

− 8 <x< 4
3 3

Therefore the solution set is { x │ − 8 <x < 4 }
3 3

(b) 4 − 3x >5

4 − 3x  −5 4 − 3x  5

− 3x  −9 − 3x  1

x3 x−1
3

Therefore the solution set is { x │ x  − 1 or x  3 }
3

EXAMPLE 2

Find the set of values for x where
(a) 2x +1  1

1+ x 2

(b) x + 3  3x − 5

x

(c) ( x + 3 ) ( 2 – x ) ( x – 1 ) > 0

Solution:

(a) 2x +1  1 -- + 3x + 1 > 0
1+ x 2
+ 1+ x > 0
2x +1 − 1  0 -+ 1 x
1+ x 2 −3

2(2x +1) − (1+ x)  0 +
2(1+ x)

3x +1  0 +-
2(1+ x)

Therefore the solution set is { x │ −1 <x < − 1 }
3

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

43

(b) x + 3  3x − 5
x

x + 3 −  3x − 5   0
x

x(x + 3) − (3x − 5)  0
x
x2 + 5  0
x

x2 + 5  0 x

Therefore the solution set is { x │ x > 0 }

(c) ( x + 3 ) ( 2 – x ) ( x – 1 ) > 0
(x+3)(x–2)(x–1)<0

-+ ++ x +3 > 0
-- ++ x ̶ 1>0
-- -+ x ̶ 2>0
x
- ̶3 + 1- 2 +

Therefore the solution set is { x │x < ̶ 3 or 1 < x < 2 }

EXAMPLE 3
Find the set of real values of x where 3x3 + 4 < x2 + 12x

Solution: -+ ++ x+2>0
3x3 + 4 < x2 + 12x -- ++ 3x ̶ 1 > 0
-- -+ x ̶ 2>0
3x3 – x2 – 12x + 4 < 0 x
- ̶ 2+ 1
Let P(x) = 3x3 – x2 – 12x + 4 2+
When x = 2 3-

P(2) = 3(2)3 – (2)2 – 12(2) + 4 = 0
Therefore, (x – 2) is a factor of P(x).

When x = –2
P(–2) = 3(–2)3– (–2)2 – 12(–2) + 4 = 0

Therefore, (x + 2) is a factor of P(x).

3x3 – x2 – 12x + 4 = (x + 2)(x – 2)(3x – 1) by inspection
3x3 – x2 – 12x + 4 < 0

(x + 2)(x – 2)(3x – 1) < 0

Therefore the solution set is { x │ x < − 2 or 1 < x < 2 }
3

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

44

EXAMPLE 4

Find the set of values of x for which x +1  4 x −1

Solution:

(x + 1)2 < 16(x – 1)2 - - + 5x ̶ 3 > 0
x2 + 2x + 1 < 16(x2 – 2x +1) + + 3x ̶ 5 > 0
x
15x2 – 34x + 15 > 0 - 3- 5
5 3+
(5x – 3)(3x – 5) > 0

Therefore the solution set is { x│ x< 3 5
5 or x > 3 }
+

EXAMPLE 5
Find the set of values of x for which 2x −1  1

x

Solution:

Sketch y = 2x −1 and y = 1 y y = 1

x

y = 2x – 1 ….(1) y=1 ….(2) y = –2x + 1 y = 2x – 1
x 1 x

Substituting (1) into (2)

2x – 1 = 1 0 11
x
2
2x2 – x – 1 = 0
(2x + 1)(x – 1) = 0

x = − 1 or x = 1
2

The set of values of x for which 2x −1  1 is { x │ x < 0 or x > 1 }
x

EXAMPLE 6

Sketch, on the same axes, the graphs of y = 2x +1 and y = 1 – x2. Hence, solve the inequality

2x +1 > 1 – x2.

Solution: y = 2x +1 y 1 x
Point of intersection for x  − 1 1
-1 0
2
– (2x + 1) = 1 – x2
x2 – 2x – 2 = 0

x = 2 4+8
2

=1− 3

For 2x +1 > 1 – x2, the solution set is { x │x > 0 or x < 1− 3 }.

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG

45
WORKSHEET 1.5
Q1 Find, in each case, the set of values of x for

(a) x ( x – 2 ) > x + 4
(b) x – 2 > x + 4

x
Solution:

1(a)

1(b)

Q2 Sketch, on the same diagram, the graph of y = 1 and the graph of 6y = 1 + ︱x︱.
x

Find the set of values of x such that 1 + ︱x︱> 6
x.

Solution:

UNIT SAINS DAN MATEMATIK, SEKTOR PEMBELAJARAN, JABATAN PENDIDIKAN NEGERI PULAU PINANG


Click to View FlipBook Version