The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Chapter-81 สรุปดีมากกก

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2017-10-06 19:25:08

Chapter-81 สรุปดีมากกก

Chapter-81 สรุปดีมากกก

Introduction

• Calculation of deflections is an important part of 
structural analysis

• Excessive beam deflection can be seen as a mode of 
failure.

– Extensive glass breakage in tall buildings can be attributed 
to excessive deflections

– Large deflections in buildings are unsightly (and unnerving) 
and can cause cracks in ceilings and walls.

– Deflections are limited to prevent undesirable vibrations

Beam Deflection

• Bending changes the 
initially straight 
longitudinal axis of the 
beam into a curve that 
is called the 
Deflection Curve or 
Elastic Curve

Beam Deflection

• To determine the deflection curve:

– Draw shear and moment diagram for the beam
– Directly under the moment diagram draw a line for the 

beam and label all supports
– At the supports displacement is zero
– Where the moment is negative, the deflection curve is 

concave downward.
– Where the moment is positive the deflection curve is 

concave upward
– Where the two curve meet is the Inflection Point



Deflected Shape

Example 1

Draw the deflected shape for each of the beams shown

Example 2

Draw the deflected shape for each of the frames shown

Double Integration Method

Elastic‐Beam Theory

• Consider a differential element 
of a beam subjected to pure 
bending.

• The radius of curvature ρ is 
measured from the center of 
curvature to the neutral axis

• Since the NA is unstretched, 
the dx=ρdθ

Elastic‐Beam Theory

• Applying Hooke’s law and the Flexure formula, we 
obtain:

1=M

ρ EI

Elastic‐Beam Theory

• The product EI is referred to as the flexural rigidity.
• Since dx = ρdθ, then

dθ = M dx (Slope)

EI

„ In most calculus books 

d 2v / dx2

1+ (dv / dx)2
[ ]1= 3
2
ρ

d 2v / dx2

1+ (dv / dx)2
[ ]M= 3 (exact solution)
2
EI

d 2v = M
dx2 EI

The Double Integration Method
Relate Moments to Deflections

d 2v = M
dx2 EI

θ (x) = dv = ∫ M(x) dx Do Not
dx Integration Constants
EI(x)
Use Boundary Conditions to 
v( x) = ∫∫ M (x) dx 2 Evaluate Integration 
EI Constants
(x)

Assumptions and Limitations

™Deflections caused by shearing action negligibly small compared to bending
™Deflections are small compared to the cross‐sectional dimensions of the beam
™All portions of the beam are acting in the elastic range
™Beam is straight prior to the application of loads

y L Examples
PL x
M = −PL + Px

x

P P EI d2y = M
@ x dx 2
EI d 2 y = −PL + Px
dx 2
dy x2
Integrating once EI dx = −PLx + P 2 + c1

@ x = 0 dy = 0 ⇒ EI (0) = −PL(0)+ P (0)2 + c1 ⇒ c1 =0
dx
2
EIy = − PLx2 + P x3 +
Integrating twice 2 6(0)3 c2
⇒ EI (0) = − + + c2 ⇒ c2 = 0 PL3
@ x = 0 y = 0 PL (0)2 P 3EI
EIy = − PLx2 + P x3 26
∆ max =
@ x = L  y = ymax

2 6 PL L2 L3 PL3 PL3
2 6 6 3EI
EIymax = − + P = − ⇒ ymax = −

y W x M = − W (L − x)2
2
WL2 x
2 WL L EI d2y = M
dx 2
@ x d2y −W (L x)2
EI dx 2 = 2 −

Integrating once EI dy = W (L − x)3 + c1
dx 2
3

@ x = 0 dy = 0 ⇒ EI (0) = W (L − 0)3 + c1 ⇒ c1 = − WL3
dx 6
2 3

∴ EI dy = W (L − x)3 − WL3
dx 6 6

Integrating twice EIy = −W (L − x)4 − WL3 x + c2
6 6
4

@ x = 0 y=0 ⇒ EI (0) = − W (L − 0)4 − WL3 (0) + c2 ⇒ c2 = WL4
6 24
6 4

EIy = − W (L − x)4 − WL3 x + WL4

24 6 24

Max. occurs @ x = L  

EIymax = − W L4 + WL4 = − WL4 ⇒ ymax = − WL4
6 24 8 8EI

∆ max = WL4
8EI

Example yx

x

WL L WL

2 M = WL x −Wx x 2

22

EI d2y = WL x −W x2
dx 2 2 2

Integrating EI dy = WL x2 −W x3 + c1
dx 2 2 2 3

Since the beam is symmetric @ x= L dy = 0
⎜⎛ L ⎞3 2 dx
@ x= L ⎛⎜ L ⎞2 −W ⎝2⎠ ⇒ WL3
2 EI (0) = WL ⎝ 2 ⎠ 23 24
+ c1 c1 = −
22

∴ EI dy = WL x2 − W x3 − WL3
dx 4 6 24

Integrating EIy = WL x3 −W x4 − WL3 x + c2
@ x = 0 y = 0 4 3 6 4 24

⇒ EI (0) = WL (0)3 −W (0)4 − WL3 (0)+ c2 ⇒ c2 = 0
4 6 24
3 4

∴ EIy = WL x3 − W x4 − WL3 x
12 24 24

Max. occurs @ x = L /2  EIymax = − 5WL4
384

∆ max = 5WL4
384EI

Example yx P

x

P L/2 L/2 P

2 for 0 < x < L M = P x 2
22
d2y
EI dx 2 = P x for 0 < x < L
2 2

Integrating EI dy = P x2 + c1
dx 2 2

Since the beam is symmetric @ x= L dy = 0
2 dx
⎛⎜ L ⎞2 c1 ⇒
@ x= L EI (0) = P ⎝ 2⎠ + c1 = − PL2
2 2 2 16

∴ EI dy = P x2 − PL2
dx 4 16

Integrating EIy = P x3 − PL2 x + c2
@ x = 0 y = 0 4 3 16

⇒ EI (0) = P (0)3 − PL2 (0) + c2 ⇒ c2 = 0
4 16
3

∴ EIy = P x3 − PL2 x
12 16

Max. occurs @ x = L /2  EIymax = − PL 3
48

∆ max = PL3
48EI

Example

Example 5





Moment‐Area Theorems

Moment‐Area Theorems

Theorem 1: The change in slope between any two points on
the elastic curve equal to the area of the bending moment
diagram between these two points, divided by the product EI.

d 2v = M ⇒ θ = dv
dx 2 EI
dx

dθ = M ⇒ dθ = ⎛ M ⎟⎠⎞ dx
⎝⎜ EI
dx EI

∫θBA B M dx
EI
=

A

dt = xdθ

dθ = ⎛ M ⎞ dx
⎝⎜ EI ⎟⎠

B M dx B M dx
EI EI
∫ ∫tBA= x =x

A A

Moment‐Area Theorems

Theorem 2: The vertical distance of point A on a elastic
curve from the tangent drawn to the curve at B is equal to
the moment of the area under the M/EI diagram between
two points (A and B) about point A .

B∫t A B M dx
EI
=x

A

∫t AB B M dx
EI
=x

A

Example 1



Example 2



Example 3



Example 4



Example 5



Example 6



Example 7

M/EI ‐20/EI

‐30/EI



tC /B = ⎛ − 20 ⋅ 2 ⎞ ⋅ (1) + 1 ⋅ ⎛ − 10 ⋅ 2 ⎞ ⋅ ⎛ 2 ⋅ 2 ⎞
⎜⎝ EI ⎟⎠ 2 ⎝⎜ EI ⎟⎠ ⎝⎜ 3 ⎟⎠

= − 53.33 kN ⋅ m 3 = 0.00741 rad
EI

Another Solution

Conjugate-Beam Method

Conjugate-Beam Method

dV =w d 2M =w
dx dx 2

dθ = M d 2v = M
dx 2 EI
dx EI

Integrating

V = ∫wdx M = ∫ ⎡⎣∫wdx ⎦⎤dx

θ = ∫ ⎛ M ⎞⎠⎟dx v = ∫ ⎡⎢⎣∫ ⎛ M ⎞⎠⎟ dx ⎤
⎝⎜ EI ⎝⎜ EI ⎦⎥dx

Conjugate-Beam Supports



Example 1

Find the Max. deflection Take E=200Gpa, I=60(106)

θB = VB' = − 562.5
EI

∆B = M B' = 562.5 (25) = −14062.5
EI EI

Example 2

Find the deflection at Point C

C


Click to View FlipBook Version